Nanostructured Antimony-Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F16%3A00461203" target="_blank" >RIV/61388955:_____/16:00461203 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/adfm.201602148" target="_blank" >http://dx.doi.org/10.1002/adfm.201602148</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adfm.201602148" target="_blank" >10.1002/adfm.201602148</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nanostructured Antimony-Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics
Popis výsledku v původním jazyce
Nanostructured transparent conducting oxide (TCO) layers gain increasing importance as high surface area electrodes enabling incorporation of functional redox species with high loading. The fabrication of porous TCO films, namely, antimony-doped tin oxide (ATO), is reported using the self-assembly of preformed ATO nanocrystals with poly(ethylene oxide-b-hexyl acrylate) (PEO-b-PHA) block copolymer. The high molar mass of the polymer and tunable solution processing conditions enable the fabrication of TCO electrodes with pore sizes ranging from mesopores to macropores. Particularly notable is access to uniform macroporous films with a nominal pore size of around 80 nm, which is difficult to obtain by other techniques. The combination of tunable porosity with a large conducting interface makes the obtained layers versatile current collectors with adjustable performance. While all the obtained electrodes incorporate a large amount of small redox molecules such as molybdenum polyoxometalate, only the electrodes with sufficiently large macropores are able to accommodate high amounts of bulky photoactive photosystem I (PSI) protein complexes. The 11-fold enhancement of the current response of PSI modified macroporous ATO electrodes compared to PSI on planar indium tin oxide (ITO), makes this type of electrodes promising candidates for the development of biohybrid devices.
Název v anglickém jazyce
Nanostructured Antimony-Doped Tin Oxide Layers with Tunable Pore Architectures as Versatile Transparent Current Collectors for Biophotovoltaics
Popis výsledku anglicky
Nanostructured transparent conducting oxide (TCO) layers gain increasing importance as high surface area electrodes enabling incorporation of functional redox species with high loading. The fabrication of porous TCO films, namely, antimony-doped tin oxide (ATO), is reported using the self-assembly of preformed ATO nanocrystals with poly(ethylene oxide-b-hexyl acrylate) (PEO-b-PHA) block copolymer. The high molar mass of the polymer and tunable solution processing conditions enable the fabrication of TCO electrodes with pore sizes ranging from mesopores to macropores. Particularly notable is access to uniform macroporous films with a nominal pore size of around 80 nm, which is difficult to obtain by other techniques. The combination of tunable porosity with a large conducting interface makes the obtained layers versatile current collectors with adjustable performance. While all the obtained electrodes incorporate a large amount of small redox molecules such as molybdenum polyoxometalate, only the electrodes with sufficiently large macropores are able to accommodate high amounts of bulky photoactive photosystem I (PSI) protein complexes. The 11-fold enhancement of the current response of PSI modified macroporous ATO electrodes compared to PSI on planar indium tin oxide (ITO), makes this type of electrodes promising candidates for the development of biohybrid devices.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Functional Materials
ISSN
1616-301X
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
37
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
6682-6692
Kód UT WoS článku
000384810300008
EID výsledku v databázi Scopus
2-s2.0-84979249517