Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F16%3A00472523" target="_blank" >RIV/61388955:_____/16:00472523 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.nanoen.2016.04.011" target="_blank" >http://dx.doi.org/10.1016/j.nanoen.2016.04.011</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.nanoen.2016.04.011" target="_blank" >10.1016/j.nanoen.2016.04.011</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution

  • Popis výsledku v původním jazyce

    We study the oxygen reduction (ORR) and the oxygen evolution reaction (OER) and based on previous obtained mechanistic insight we provide a unified general analysis of the two reactions simultaneously. The analysis shows that control over at least two independent binding energies is required to obtain a reversible perfect catalyst for both ORR and OER. Often only the reactivity of the surface is changed by changing from one material to another and all binding energies scale with the reactivity. We investigate the limitation in efficiency imposed by these linear scaling relations. This analysis gives rise to a double volcano for ORR and OER, with a region in between, forbidden by the scaling relations. The reversible perfect catalyst for both ORR and OER would fall into this "forbidden region". Previously, we have found that hydrogen acceptor functionality on oxide surfaces can improve the catalytic performance for OER beyond the limitations originating from the scaling relations. We use this concept to search for promising combinations of binding sites and hydrogen donor/acceptor sites available in transition metal doped graphene, which can act as a catalyst for ORR and OER. We find that MnN4-site embedded in graphene by itself or combined with a COOH is a promising combination for a great combined ORR/OER catalyst. (C) 2016 Elsevier Ltd. All rights reserved.

  • Název v anglickém jazyce

    Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution

  • Popis výsledku anglicky

    We study the oxygen reduction (ORR) and the oxygen evolution reaction (OER) and based on previous obtained mechanistic insight we provide a unified general analysis of the two reactions simultaneously. The analysis shows that control over at least two independent binding energies is required to obtain a reversible perfect catalyst for both ORR and OER. Often only the reactivity of the surface is changed by changing from one material to another and all binding energies scale with the reactivity. We investigate the limitation in efficiency imposed by these linear scaling relations. This analysis gives rise to a double volcano for ORR and OER, with a region in between, forbidden by the scaling relations. The reversible perfect catalyst for both ORR and OER would fall into this "forbidden region". Previously, we have found that hydrogen acceptor functionality on oxide surfaces can improve the catalytic performance for OER beyond the limitations originating from the scaling relations. We use this concept to search for promising combinations of binding sites and hydrogen donor/acceptor sites available in transition metal doped graphene, which can act as a catalyst for ORR and OER. We find that MnN4-site embedded in graphene by itself or combined with a COOH is a promising combination for a great combined ORR/OER catalyst. (C) 2016 Elsevier Ltd. All rights reserved.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    CF - Fyzikální chemie a teoretická chemie

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nano Energy

  • ISSN

    2211-2855

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    NOV 2016

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    126-135

  • Kód UT WoS článku

    000389624100010

  • EID výsledku v databázi Scopus

    2-s2.0-84965069069