Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A new approach to molecular dynamics with non-adiabatic and spin-orbit effects with applications to QM/MM simulations of thiophene and selenophene

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F17%3A00484085" target="_blank" >RIV/61388955:_____/17:00484085 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/17:10372892

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1063/1.4978289" target="_blank" >http://dx.doi.org/10.1063/1.4978289</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4978289" target="_blank" >10.1063/1.4978289</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A new approach to molecular dynamics with non-adiabatic and spin-orbit effects with applications to QM/MM simulations of thiophene and selenophene

  • Popis výsledku v původním jazyce

    We present surface hopping dynamics on potential energy surfaces resulting from the spin-orbit splitting, i.e., surfaces corresponding to the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. In this approach, difficulties arise because of random phases of degenerate eigenvectors and possibility of crossings of the resulting mixed states. Our implementation solves these problems and allows propagation of the coefficients both in the representation of the spin free Hamiltonian and directly in the „diagonal representation“ of the mixed states. We also provide a detailed discussion of the state crossing and point out several peculiarities that were not mentioned in the previous literature. We also incorporate the effect of the environment via the quantum mechanics/molecular mechanics approach. As a test case, we apply our methodology to deactivation of thiophene and selenophene in the gas phase, ethanol solution, and bulk liquid phase. First, 100 trajectories without spin-orbit coupling have been calculated for thiophene starting both in S-1 and S-2 states. A subset of 32 initial conditions starting in the S-2 state was then used for gas phase simulations with spin-orbit coupling utilizing the 3-step integrator of SHARC, our implementation of the 3-step propagator in Newton-X and two new „one-step“ approaches. Subsequently, we carried out simulations in ethanol solution and bulk liquid phase for both thiophene and selenophene. For both molecules, the deactivation of the S-2 state proceeds via the ring opening pathway. The total population of triplet states reaches around 15% and 40% after 80 fs for thiophene and selenophene, respectively. However, it only begins growing after the ring opening is initiated. Hence, the triplet states do not directly contribute to the deactivation mechanism...

  • Název v anglickém jazyce

    A new approach to molecular dynamics with non-adiabatic and spin-orbit effects with applications to QM/MM simulations of thiophene and selenophene

  • Popis výsledku anglicky

    We present surface hopping dynamics on potential energy surfaces resulting from the spin-orbit splitting, i.e., surfaces corresponding to the eigenstates of the total electronic Hamiltonian including the spin-orbit coupling. In this approach, difficulties arise because of random phases of degenerate eigenvectors and possibility of crossings of the resulting mixed states. Our implementation solves these problems and allows propagation of the coefficients both in the representation of the spin free Hamiltonian and directly in the „diagonal representation“ of the mixed states. We also provide a detailed discussion of the state crossing and point out several peculiarities that were not mentioned in the previous literature. We also incorporate the effect of the environment via the quantum mechanics/molecular mechanics approach. As a test case, we apply our methodology to deactivation of thiophene and selenophene in the gas phase, ethanol solution, and bulk liquid phase. First, 100 trajectories without spin-orbit coupling have been calculated for thiophene starting both in S-1 and S-2 states. A subset of 32 initial conditions starting in the S-2 state was then used for gas phase simulations with spin-orbit coupling utilizing the 3-step integrator of SHARC, our implementation of the 3-step propagator in Newton-X and two new „one-step“ approaches. Subsequently, we carried out simulations in ethanol solution and bulk liquid phase for both thiophene and selenophene. For both molecules, the deactivation of the S-2 state proceeds via the ring opening pathway. The total population of triplet states reaches around 15% and 40% after 80 fs for thiophene and selenophene, respectively. However, it only begins growing after the ring opening is initiated. Hence, the triplet states do not directly contribute to the deactivation mechanism...

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP208%2F12%2F0559" target="_blank" >GAP208/12/0559: Ab initio molekulová dynamika s neadiabatickými a spinorbitálními efekty aplikovaná na časově závislou fluorescenci</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

  • Svazek periodika

    146

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000397313600003

  • EID výsledku v databázi Scopus

    2-s2.0-85015711502