Veldkamp spaces: From (Dynkin) diagrams to (Pauli) groups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F17%3A00506644" target="_blank" >RIV/61388955:_____/17:00506644 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0297851" target="_blank" >http://hdl.handle.net/11104/0297851</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219887817500803" target="_blank" >10.1142/S0219887817500803</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Veldkamp spaces: From (Dynkin) diagrams to (Pauli) groups
Popis výsledku v původním jazyce
Regarding a Dynkin diagram as a specific point-line incidence structure (where each line has just two points), one can associate with it a Veldkamp space. Focusing on extended Dynkin diagrams of type (D) over tilden, 4 <= n <= 8, it is shown that the corresponding Veldkamp space always contains a distinguished copy of the projective space PG(3, 2). Proper labeling of the vertices of the diagram (for 4 <= n <= 7) by particular elements of the two-qubit Pauli group establishes a bijection between the 15 elements of the group and the 15 points of the PG(3, 2). The bijection is such that the product of three elements lying on the same line is the identity and one also readily singles out that particular copy of the symplectic polar space W(3, 2) of the PG(3, 2) whose lines correspond to triples of mutually commuting elements of the group. In the latter case, in addition, we arrive at a unique copy of the Mermin-Peres magic square. In the case of n = 8, a more natural labeling is that in terms of elements of the three-qubit Pauli group, furnishing a bijection between the 63 elements of the group and the 63 points of PG(5, 2), the latter being the maximum projective subspace of the corresponding Veldkamp space. Here, the points of the distinguished PG(3, 2) are in a bijection with the elements of a two-qubit subgroup of the three-qubit Pauli group, yielding a three-qubit version of the Mermin-Peres square. Moreover, save for n = 4, each Veldkamp space is also endowed with some exceptional point(s). Interestingly, two such points in the n = 8 case define a unique Fano plane whose inherited three-qubit labels feature solely the Pauli matrix Y.
Název v anglickém jazyce
Veldkamp spaces: From (Dynkin) diagrams to (Pauli) groups
Popis výsledku anglicky
Regarding a Dynkin diagram as a specific point-line incidence structure (where each line has just two points), one can associate with it a Veldkamp space. Focusing on extended Dynkin diagrams of type (D) over tilden, 4 <= n <= 8, it is shown that the corresponding Veldkamp space always contains a distinguished copy of the projective space PG(3, 2). Proper labeling of the vertices of the diagram (for 4 <= n <= 7) by particular elements of the two-qubit Pauli group establishes a bijection between the 15 elements of the group and the 15 points of the PG(3, 2). The bijection is such that the product of three elements lying on the same line is the identity and one also readily singles out that particular copy of the symplectic polar space W(3, 2) of the PG(3, 2) whose lines correspond to triples of mutually commuting elements of the group. In the latter case, in addition, we arrive at a unique copy of the Mermin-Peres magic square. In the case of n = 8, a more natural labeling is that in terms of elements of the three-qubit Pauli group, furnishing a bijection between the 63 elements of the group and the 63 points of PG(5, 2), the latter being the maximum projective subspace of the corresponding Veldkamp space. Here, the points of the distinguished PG(3, 2) are in a bijection with the elements of a two-qubit subgroup of the three-qubit Pauli group, yielding a three-qubit version of the Mermin-Peres square. Moreover, save for n = 4, each Veldkamp space is also endowed with some exceptional point(s). Interestingly, two such points in the n = 8 case define a unique Fano plane whose inherited three-qubit labels feature solely the Pauli matrix Y.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of geometric Methods in Modern Physics
ISSN
0219-8878
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
23
Strana od-do
1750080
Kód UT WoS článku
000399397000016
EID výsledku v databázi Scopus
2-s2.0-85017423173