Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Veldkamp spaces: From (Dynkin) diagrams to (Pauli) groups

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F17%3A00506644" target="_blank" >RIV/61388955:_____/17:00506644 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hdl.handle.net/11104/0297851" target="_blank" >http://hdl.handle.net/11104/0297851</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219887817500803" target="_blank" >10.1142/S0219887817500803</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Veldkamp spaces: From (Dynkin) diagrams to (Pauli) groups

  • Popis výsledku v původním jazyce

    Regarding a Dynkin diagram as a specific point-line incidence structure (where each line has just two points), one can associate with it a Veldkamp space. Focusing on extended Dynkin diagrams of type (D) over tilden, 4 <= n <= 8, it is shown that the corresponding Veldkamp space always contains a distinguished copy of the projective space PG(3, 2). Proper labeling of the vertices of the diagram (for 4 <= n <= 7) by particular elements of the two-qubit Pauli group establishes a bijection between the 15 elements of the group and the 15 points of the PG(3, 2). The bijection is such that the product of three elements lying on the same line is the identity and one also readily singles out that particular copy of the symplectic polar space W(3, 2) of the PG(3, 2) whose lines correspond to triples of mutually commuting elements of the group. In the latter case, in addition, we arrive at a unique copy of the Mermin-Peres magic square. In the case of n = 8, a more natural labeling is that in terms of elements of the three-qubit Pauli group, furnishing a bijection between the 63 elements of the group and the 63 points of PG(5, 2), the latter being the maximum projective subspace of the corresponding Veldkamp space. Here, the points of the distinguished PG(3, 2) are in a bijection with the elements of a two-qubit subgroup of the three-qubit Pauli group, yielding a three-qubit version of the Mermin-Peres square. Moreover, save for n = 4, each Veldkamp space is also endowed with some exceptional point(s). Interestingly, two such points in the n = 8 case define a unique Fano plane whose inherited three-qubit labels feature solely the Pauli matrix Y.

  • Název v anglickém jazyce

    Veldkamp spaces: From (Dynkin) diagrams to (Pauli) groups

  • Popis výsledku anglicky

    Regarding a Dynkin diagram as a specific point-line incidence structure (where each line has just two points), one can associate with it a Veldkamp space. Focusing on extended Dynkin diagrams of type (D) over tilden, 4 <= n <= 8, it is shown that the corresponding Veldkamp space always contains a distinguished copy of the projective space PG(3, 2). Proper labeling of the vertices of the diagram (for 4 <= n <= 7) by particular elements of the two-qubit Pauli group establishes a bijection between the 15 elements of the group and the 15 points of the PG(3, 2). The bijection is such that the product of three elements lying on the same line is the identity and one also readily singles out that particular copy of the symplectic polar space W(3, 2) of the PG(3, 2) whose lines correspond to triples of mutually commuting elements of the group. In the latter case, in addition, we arrive at a unique copy of the Mermin-Peres magic square. In the case of n = 8, a more natural labeling is that in terms of elements of the three-qubit Pauli group, furnishing a bijection between the 63 elements of the group and the 63 points of PG(5, 2), the latter being the maximum projective subspace of the corresponding Veldkamp space. Here, the points of the distinguished PG(3, 2) are in a bijection with the elements of a two-qubit subgroup of the three-qubit Pauli group, yielding a three-qubit version of the Mermin-Peres square. Moreover, save for n = 4, each Veldkamp space is also endowed with some exceptional point(s). Interestingly, two such points in the n = 8 case define a unique Fano plane whose inherited three-qubit labels feature solely the Pauli matrix Y.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of geometric Methods in Modern Physics

  • ISSN

    0219-8878

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    SG - Singapurská republika

  • Počet stran výsledku

    23

  • Strana od-do

    1750080

  • Kód UT WoS článku

    000399397000016

  • EID výsledku v databázi Scopus

    2-s2.0-85017423173