Studying the Electrical Properties of Single Molecules by Break Junction Techniques
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F18%3A00484608" target="_blank" >RIV/61388955:_____/18:00484608 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/B978-0-12-409547-2.13307-4" target="_blank" >http://dx.doi.org/10.1016/B978-0-12-409547-2.13307-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-12-409547-2.13307-4" target="_blank" >10.1016/B978-0-12-409547-2.13307-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Studying the Electrical Properties of Single Molecules by Break Junction Techniques
Popis výsledku v původním jazyce
Molecular electronics aims at use of molecules as the working components (wires, diodes, transistors, and logic and memorynelements) of the future electronic devices. It represents an alternative to the solid-state semiconductor technologies, which willnsoon reach their miniaturization limits. Naturally, studies of electrical properties of molecules at the single molecule level representnthe cornerstone in the development of molecular electronic devices. The invention of the scanning tunneling microscope (STM) bynGerd Binnig and Heinrich Rohrer (Nobel Prize in Physics in 1986) and of the atomic force microscope (AFM) by Gerd Binnig,nCalvin Quate, and Christoph Gerber enabled to overcome the experimental barrier for direct visualization of individual moleculesnand promoted the evaluation of their properties at the single molecule level.nMolecular electronic components typically consist of a backbone capped by two termini-anchors to provide contact withntwo electrodes. Examples of anchoring groups include thiol, pyridine, nitrile, amine, or fullerene. Passive componentsn(molecular wires and resistors) possess no functionality in the backbone. Active ones, such as molecular diodes ornswitches, contain additional moiety that provides desired functionality. Current rectification in molecular diodes may benfor example attained by an asymmetric arrangement of side groups with a different inductive effect. Molecular switchesncontain a moiety with two chemically stable states. These states are switched by an external trigger such as illuminationn(photoswitches), local environment (pH and ligand-driven switches), pressure (mechanical switches), or electrode potentialn(redox switches).
Název v anglickém jazyce
Studying the Electrical Properties of Single Molecules by Break Junction Techniques
Popis výsledku anglicky
Molecular electronics aims at use of molecules as the working components (wires, diodes, transistors, and logic and memorynelements) of the future electronic devices. It represents an alternative to the solid-state semiconductor technologies, which willnsoon reach their miniaturization limits. Naturally, studies of electrical properties of molecules at the single molecule level representnthe cornerstone in the development of molecular electronic devices. The invention of the scanning tunneling microscope (STM) bynGerd Binnig and Heinrich Rohrer (Nobel Prize in Physics in 1986) and of the atomic force microscope (AFM) by Gerd Binnig,nCalvin Quate, and Christoph Gerber enabled to overcome the experimental barrier for direct visualization of individual moleculesnand promoted the evaluation of their properties at the single molecule level.nMolecular electronic components typically consist of a backbone capped by two termini-anchors to provide contact withntwo electrodes. Examples of anchoring groups include thiol, pyridine, nitrile, amine, or fullerene. Passive componentsn(molecular wires and resistors) possess no functionality in the backbone. Active ones, such as molecular diodes ornswitches, contain additional moiety that provides desired functionality. Current rectification in molecular diodes may benfor example attained by an asymmetric arrangement of side groups with a different inductive effect. Molecular switchesncontain a moiety with two chemically stable states. These states are switched by an external trigger such as illuminationn(photoswitches), local environment (pH and ligand-driven switches), pressure (mechanical switches), or electrode potentialn(redox switches).
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Encyclopedia of Interfacial Chemistry
ISBN
978-0-12-809894-3
Počet stran výsledku
10
Strana od-do
271-280
Počet stran knihy
550
Název nakladatele
Elsevier
Místo vydání
New York
Kód UT WoS kapitoly
—