Investigation of the charge transport in model single molecule junctions based on expanded bipyridinium molecular conductors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F19%3A00501883" target="_blank" >RIV/61388955:_____/19:00501883 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0293865" target="_blank" >http://hdl.handle.net/11104/0293865</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2019.01.132" target="_blank" >10.1016/j.electacta.2019.01.132</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigation of the charge transport in model single molecule junctions based on expanded bipyridinium molecular conductors
Popis výsledku v původním jazyce
In this work the charge transport and energetics of a photochemically addressable single molecule switch based on the expanded bipyridinium core linked to an anchoring group with a controlled torsion angle θ was investigated. Electrochemical and UV-VIS absorption spectroscopy techniques complemented by the analysis based on density functional theory (DFT) show that for selected molecules the energy and shape of the LUMO is insensitive to the value of θ but the difference in torsion angle θ leads to a sizable shift of the LUMO energy and single molecule conductance value in a metal-molecule-metal junction for these molecules as shown by the combination of experimental single molecule break junction technique and theoretical non-equilibrium Green's function (NEGF)/DFT approach. The conductance switching ratio calculated from the cos 2 θ law is in a perfect agreement with the value obtained from the NEGF approach. Our combined experimental and theoretical approach paves the way for investigating expanded bipyridinium systems with multiple photochemically addressable units potentially achieving greater conductance switching ratios.
Název v anglickém jazyce
Investigation of the charge transport in model single molecule junctions based on expanded bipyridinium molecular conductors
Popis výsledku anglicky
In this work the charge transport and energetics of a photochemically addressable single molecule switch based on the expanded bipyridinium core linked to an anchoring group with a controlled torsion angle θ was investigated. Electrochemical and UV-VIS absorption spectroscopy techniques complemented by the analysis based on density functional theory (DFT) show that for selected molecules the energy and shape of the LUMO is insensitive to the value of θ but the difference in torsion angle θ leads to a sizable shift of the LUMO energy and single molecule conductance value in a metal-molecule-metal junction for these molecules as shown by the combination of experimental single molecule break junction technique and theoretical non-equilibrium Green's function (NEGF)/DFT approach. The conductance switching ratio calculated from the cos 2 θ law is in a perfect agreement with the value obtained from the NEGF approach. Our combined experimental and theoretical approach paves the way for investigating expanded bipyridinium systems with multiple photochemically addressable units potentially achieving greater conductance switching ratios.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrochimica acta
ISSN
0013-4686
e-ISSN
—
Svazek periodika
301
Číslo periodika v rámci svazku
APR 2019
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
267-273
Kód UT WoS článku
000459481700030
EID výsledku v databázi Scopus
2-s2.0-85061298246