Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F19%3A00510111" target="_blank" >RIV/61388955:_____/19:00510111 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0300663" target="_blank" >http://hdl.handle.net/11104/0300663</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5126597" target="_blank" >10.1063/1.5126597</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning
Popis výsledku v původním jazyce
Understanding the origins of enhanced reactivity of supported, subnanometer in size, metal oxide clusters is challenging due to the scarcity of methods capable to extract atomic-level information from the experimental data. Due to both the sensitivity of X-ray absorption near edge structure (XANES) spectroscopy to the local geometry around metal ions and reliability of theoretical spectroscopy codes for modeling XANES spectra, supervised machine learning approach has become a powerful tool for extracting structural information from the experimental spectra. Here, we present the application of this method to grazing incidence XANES spectra of size-selective Cu oxide clusters on flat support, measured in operando conditions of the methanation reaction. We demonstrate that the convolution neural network can be trained on theoretical spectra and utilized to “invert” experimental XANES data to obtain structural descriptors—the Cu–Cu coordination numbers. As a result, we were able to distinguish between different structural motifs (Cu2O-like and CuO-like) of Cu oxide clusters, transforming in reaction conditions, and reliably evaluate average cluster sizes, with important implications for the understanding of structure, composition, and function relationships in catalysis.
Název v anglickém jazyce
Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning
Popis výsledku anglicky
Understanding the origins of enhanced reactivity of supported, subnanometer in size, metal oxide clusters is challenging due to the scarcity of methods capable to extract atomic-level information from the experimental data. Due to both the sensitivity of X-ray absorption near edge structure (XANES) spectroscopy to the local geometry around metal ions and reliability of theoretical spectroscopy codes for modeling XANES spectra, supervised machine learning approach has become a powerful tool for extracting structural information from the experimental spectra. Here, we present the application of this method to grazing incidence XANES spectra of size-selective Cu oxide clusters on flat support, measured in operando conditions of the methanation reaction. We demonstrate that the convolution neural network can be trained on theoretical spectra and utilized to “invert” experimental XANES data to obtain structural descriptors—the Cu–Cu coordination numbers. As a result, we were able to distinguish between different structural motifs (Cu2O-like and CuO-like) of Cu oxide clusters, transforming in reaction conditions, and reliably evaluate average cluster sizes, with important implications for the understanding of structure, composition, and function relationships in catalysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Svazek periodika
151
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
164201
Kód UT WoS článku
000500362000031
EID výsledku v databázi Scopus
2-s2.0-85074148488