Probing active sites in Cux Pdy cluster catalysts by machine-learning-assisted X-ray absorption spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00544599" target="_blank" >RIV/61388955:_____/21:00544599 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0321438" target="_blank" >http://hdl.handle.net/11104/0321438</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.1c06714" target="_blank" >10.1021/acsami.1c06714</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probing active sites in Cux Pdy cluster catalysts by machine-learning-assisted X-ray absorption spectroscopy
Popis výsledku v původním jazyce
Size-selected clusters are important model catalysts because of their narrow size and compositional distributions, as well as enhanced activity and selectivity in many reactions. Still, their structure-activity relationships are, in general, elusive. The main reason is the difficulty in identifying and quantitatively characterizing the catalytic active site in the clusters when it is confined within subnanometric dimensions and under the continuous structural changes the clusters can undergo in reaction conditions. Using machine learning approaches for analysis of the operando X-ray absorption near-edge structure spectra, we obtained accurate speciation of the CuxPdy cluster types during the propane oxidation reaction and the structural information about each type. As a result, we elucidated the information about active species and relative roles of Cu and Pd in the clusters.
Název v anglickém jazyce
Probing active sites in Cux Pdy cluster catalysts by machine-learning-assisted X-ray absorption spectroscopy
Popis výsledku anglicky
Size-selected clusters are important model catalysts because of their narrow size and compositional distributions, as well as enhanced activity and selectivity in many reactions. Still, their structure-activity relationships are, in general, elusive. The main reason is the difficulty in identifying and quantitatively characterizing the catalytic active site in the clusters when it is confined within subnanometric dimensions and under the continuous structural changes the clusters can undergo in reaction conditions. Using machine learning approaches for analysis of the operando X-ray absorption near-edge structure spectra, we obtained accurate speciation of the CuxPdy cluster types during the propane oxidation reaction and the structural information about each type. As a result, we elucidated the information about active species and relative roles of Cu and Pd in the clusters.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Materials and Interfaces
ISSN
1944-8244
e-ISSN
1944-8252
Svazek periodika
13
Číslo periodika v rámci svazku
45
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
53363-53374
Kód UT WoS článku
000752870800007
EID výsledku v databázi Scopus
2-s2.0-85111204787