Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00524410" target="_blank" >RIV/61388955:_____/20:00524410 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388980:_____/20:00524410 RIV/00216208:11310/20:10412416
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsami.9b23104" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.9b23104</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.9b23104" target="_blank" >10.1021/acsami.9b23104</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds
Popis výsledku v původním jazyce
A three-step postprocessing functionalization of pristine electrospun polystyrene nanofiber membranes was used for the preparation of nanostructured biotinylated materials with an externally bonded porphyrin photosensitizer. Subsequently, the material was able to strongly bind biologically active streptavidin derivatives while keeping its photosensitizing and antibacterial properties due to the generation of singlet oxygen under the exclusive control of visible light. The resulting multifunctional materials functionalized by a streptavidin-horseradish peroxidase conjugate as a model bioactive compound preserved its enzymatic activity even in the presence of a porphyrin photosensitizer with some quenching effect on the activity of the photosensitizer. Prolonged kinetics of both singlet oxygen luminescence and singlet oxygen-sensitized delayed fluorescence (SODF) were found after irradiation by visible light. The above results reflected less effective quenching of the porphyrin photosensitizer triplet state by ground state oxygen and indicated hindered oxygen transport (diffusion) due to surface functionalization. We found that SODF could be used as a valuable tool for optimizing photosensitizing efficiency as well as a tool for confirming surface functionalization. Full photosensitizing and enzyme activity could be achieved by a space separation of photosensitizers and enzyme/biomolecules in the nanofiber composites consisting of two layers. The upper layer contained a photosensitizer that generated antibacterial singlet oxygen upon irradiation by light, and the bottom layer retained enzymatic activity for biochemical reactions.
Název v anglickém jazyce
Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds
Popis výsledku anglicky
A three-step postprocessing functionalization of pristine electrospun polystyrene nanofiber membranes was used for the preparation of nanostructured biotinylated materials with an externally bonded porphyrin photosensitizer. Subsequently, the material was able to strongly bind biologically active streptavidin derivatives while keeping its photosensitizing and antibacterial properties due to the generation of singlet oxygen under the exclusive control of visible light. The resulting multifunctional materials functionalized by a streptavidin-horseradish peroxidase conjugate as a model bioactive compound preserved its enzymatic activity even in the presence of a porphyrin photosensitizer with some quenching effect on the activity of the photosensitizer. Prolonged kinetics of both singlet oxygen luminescence and singlet oxygen-sensitized delayed fluorescence (SODF) were found after irradiation by visible light. The above results reflected less effective quenching of the porphyrin photosensitizer triplet state by ground state oxygen and indicated hindered oxygen transport (diffusion) due to surface functionalization. We found that SODF could be used as a valuable tool for optimizing photosensitizing efficiency as well as a tool for confirming surface functionalization. Full photosensitizing and enzyme activity could be achieved by a space separation of photosensitizers and enzyme/biomolecules in the nanofiber composites consisting of two layers. The upper layer contained a photosensitizer that generated antibacterial singlet oxygen upon irradiation by light, and the bottom layer retained enzymatic activity for biochemical reactions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-09721S" target="_blank" >GA19-09721S: Fotoaktivní nanovlákenné materiály a nanočástice pro inaktivaci pathogenů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Materials and Interfaces
ISSN
1944-8244
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
18792-18802
Kód UT WoS článku
000529202100063
EID výsledku v databázi Scopus
2-s2.0-85084027528