The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00532030" target="_blank" >RIV/61388955:_____/20:00532030 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/20:10418233 RIV/60461373:22340/20:43920562
Výsledek na webu
<a href="http://hdl.handle.net/11104/0310632" target="_blank" >http://hdl.handle.net/11104/0310632</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.electacta.2020.136984" target="_blank" >10.1016/j.electacta.2020.136984</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine
Popis výsledku v původním jazyce
The combination of computer assisted design and 3D printing has recently enabled fast and inexpensive manufacture of customized ‘reactionware’ for broad range of electrochemical applications. In this work bi-material fused deposition modeling 3D printing is utilized to construct an integrated platform based on a polyamide electrochemical cell and electrodes manufactured from a polylactic acid-carbon nanotube conductive composite. The cell contains separated compartments for the reference and counter electrode and enables reactants to be introduced and inspected under oxygen-free conditions. The developed platform was employed in a study investigating the electrochemical oxidation of aqueous hydrazine coupled to its bulk reaction with carbon dioxide. The analysis of cyclic voltammograms obtained in reaction mixtures with systematically varied composition confirmed that the reaction between hydrazine and carbon dioxide follows 1/1 stoichiometry and the corresponding equilibrium constant amounts to (2.8 ± 0.6) × 103. Experimental characteristics were verified by results of numerical simulations based on the finite-element-method.
Název v anglickém jazyce
The development of a fully integrated 3D printed electrochemical platform and its application to investigate the chemical reaction between carbon dioxide and hydrazine
Popis výsledku anglicky
The combination of computer assisted design and 3D printing has recently enabled fast and inexpensive manufacture of customized ‘reactionware’ for broad range of electrochemical applications. In this work bi-material fused deposition modeling 3D printing is utilized to construct an integrated platform based on a polyamide electrochemical cell and electrodes manufactured from a polylactic acid-carbon nanotube conductive composite. The cell contains separated compartments for the reference and counter electrode and enables reactants to be introduced and inspected under oxygen-free conditions. The developed platform was employed in a study investigating the electrochemical oxidation of aqueous hydrazine coupled to its bulk reaction with carbon dioxide. The analysis of cyclic voltammograms obtained in reaction mixtures with systematically varied composition confirmed that the reaction between hydrazine and carbon dioxide follows 1/1 stoichiometry and the corresponding equilibrium constant amounts to (2.8 ± 0.6) × 103. Experimental characteristics were verified by results of numerical simulations based on the finite-element-method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrochimica acta
ISSN
0013-4686
e-ISSN
—
Svazek periodika
360
Číslo periodika v rámci svazku
NOV 2020
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
136984
Kód UT WoS článku
000576817900012
EID výsledku v databázi Scopus
2-s2.0-85090003687