Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F20%3A00535532" target="_blank" >RIV/61388955:_____/20:00535532 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388980:_____/20:00535532 RIV/60461373:22330/20:43921345
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsami.0c19036" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.0c19036</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.0c19036" target="_blank" >10.1021/acsami.0c19036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light
Popis výsledku v původním jazyce
The fight against infective microorganisms is becoming a worldwide priority due to serious concerns about the rising numbers of drug-resistant pathogenic bacteria. In this context, the inactivation of pathogens by singlet oxygen, O2(1Δg), produced by photosensitizers upon light irradiation has become an attractive strategy to combat drug-resistant microbes. To achieve this goal, we electrophoretically deposited O2(1Δg)-photosensitizing octahedral molybdenum cluster complexes on indium-tin oxide-coated glass plates. This procedure led to the first example of molecular photosensitizer layers able to photoinactivate bacterial biofilms. We delineated the morphology, composition, luminescence, and singlet oxygen formation of these layers and correlated these features with their antibacterial activity. Clearly, continuous 460 nm light irradiation imparted the layers with strong antibacterial properties, and the activity of these layers inhibited the biofilm formation and eradicated mature biofilms of Gram-positive Staphylococcus aureus and Enterococcus faecalis, as well as, Gram-negative Pseudomonas aeruginosa and Escherichia coli bacterial strains. Overall, the microstructure-related oxygen diffusivity of the layers and the water stability of the complexes were the most critical parameters for the efficient and durable use. These photoactive layers are attractive for the design of antibacterial surfaces activated by visible light and include additional functionalities such as the conversion of harmful UV/blue light to red light or oxygen sensing.
Název v anglickém jazyce
Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light
Popis výsledku anglicky
The fight against infective microorganisms is becoming a worldwide priority due to serious concerns about the rising numbers of drug-resistant pathogenic bacteria. In this context, the inactivation of pathogens by singlet oxygen, O2(1Δg), produced by photosensitizers upon light irradiation has become an attractive strategy to combat drug-resistant microbes. To achieve this goal, we electrophoretically deposited O2(1Δg)-photosensitizing octahedral molybdenum cluster complexes on indium-tin oxide-coated glass plates. This procedure led to the first example of molecular photosensitizer layers able to photoinactivate bacterial biofilms. We delineated the morphology, composition, luminescence, and singlet oxygen formation of these layers and correlated these features with their antibacterial activity. Clearly, continuous 460 nm light irradiation imparted the layers with strong antibacterial properties, and the activity of these layers inhibited the biofilm formation and eradicated mature biofilms of Gram-positive Staphylococcus aureus and Enterococcus faecalis, as well as, Gram-negative Pseudomonas aeruginosa and Escherichia coli bacterial strains. Overall, the microstructure-related oxygen diffusivity of the layers and the water stability of the complexes were the most critical parameters for the efficient and durable use. These photoactive layers are attractive for the design of antibacterial surfaces activated by visible light and include additional functionalities such as the conversion of harmful UV/blue light to red light or oxygen sensing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Materials and Interfaces
ISSN
1944-8244
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
47
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
52492-52499
Kód UT WoS článku
000595547400022
EID výsledku v databázi Scopus
2-s2.0-85096535089