Splitting dioxygen over distant binuclear transition metal cationic sites in zeolites. Effect of the transition metal cation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00539847" target="_blank" >RIV/61388955:_____/21:00539847 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/86652036:_____/21:00542511
Výsledek na webu
<a href="http://hdl.handle.net/11104/0317548" target="_blank" >http://hdl.handle.net/11104/0317548</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/qua.26611" target="_blank" >10.1002/qua.26611</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Splitting dioxygen over distant binuclear transition metal cationic sites in zeolites. Effect of the transition metal cation
Popis výsledku v původním jazyce
Splitting dioxygen to yield highly active oxygen species attracts enormous attention due to its potential in direct oxidation reactions, mainly in transformation of methane into valuable products. Distant binuclear cationic Fe(II) centers in Fe-ferrierite have recently been shown to be active in splitting dioxygen at room temperature to form very active oxygen species able to oxidize methane to methanol at room temperature as well. Computational models of the distant binuclear transition metal cationic sites (Co(II), Mn(II), and Fe(II)) stabilized in the ferrierite matrix were investigated by periodic density-functional theory calculations including molecular dynamics simulations. The results reveal that the M(II) cations capable of the M(II)> M(IV) redox cycle with the M horizontal ellipsis M distance of ca 7.4 angstrom stabilized in two adjacent beta sites of ferrierite can split dioxygen. Our study opens the possibility of developing tunable zeolite-based systems for the activation of dioxygen employed for direct oxidations.
Název v anglickém jazyce
Splitting dioxygen over distant binuclear transition metal cationic sites in zeolites. Effect of the transition metal cation
Popis výsledku anglicky
Splitting dioxygen to yield highly active oxygen species attracts enormous attention due to its potential in direct oxidation reactions, mainly in transformation of methane into valuable products. Distant binuclear cationic Fe(II) centers in Fe-ferrierite have recently been shown to be active in splitting dioxygen at room temperature to form very active oxygen species able to oxidize methane to methanol at room temperature as well. Computational models of the distant binuclear transition metal cationic sites (Co(II), Mn(II), and Fe(II)) stabilized in the ferrierite matrix were investigated by periodic density-functional theory calculations including molecular dynamics simulations. The results reveal that the M(II) cations capable of the M(II)> M(IV) redox cycle with the M horizontal ellipsis M distance of ca 7.4 angstrom stabilized in two adjacent beta sites of ferrierite can split dioxygen. Our study opens the possibility of developing tunable zeolite-based systems for the activation of dioxygen employed for direct oxidations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Quantum Chemistry
ISSN
0020-7608
e-ISSN
1097-461X
Svazek periodika
121
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
e26611
Kód UT WoS článku
000614366800001
EID výsledku v databázi Scopus
2-s2.0-85100472144