Proximity Effect on the Reactivity of Dioxygen Activated over Distant Binuclear Fe Sites in Zeolite Matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00555822" target="_blank" >RIV/61388955:_____/22:00555822 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0330275" target="_blank" >http://hdl.handle.net/11104/0330275</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpcc.1c10821" target="_blank" >10.1021/acs.jpcc.1c10821</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Proximity Effect on the Reactivity of Dioxygen Activated over Distant Binuclear Fe Sites in Zeolite Matrices
Popis výsledku v původním jazyce
Distant binuclear cationic M(II) centers in transition-metal-exchanged zeolites were shown to activate dioxygen by its splitting at room temperature to form a pair of very active oxygen species (i.e., α-oxygens) able to subsequently oxidize methane to methanol at room temperature. Selective oxidations of methane and other hydrocarbons are of extreme importance because of their potential for the transformation of hydrocarbons to valuable products. The reactivity of the α-oxygens with dihydrogen was investigated to obtain insight into the reactivity of these unique species. The reduction of Fe(IV) O centers of pairs of distant α-oxygen atoms is a model reaction that allows for the study of the effect of the proximity of the other Fe(IV) O site on the reactivity of the α-oxygen. The reduction by dihydrogen is also the key reaction for the quantification of these unique sites by temperature-programmed reduction (TPR) techniques. Our study reveals that (i) there is no direct concurrent reaction of both the Fe(IV) O centers of pairs of the distant α-oxygen atoms with a molecule of dihydrogen, (ii) first, one Fe(IV) O site of a pair of the distant α-oxygen atoms reacts with H2(g) to form a water molecule, which is adsorbed on the Fe(II) cation while the other Fe(IV) O site is intact. Afterward, one of the two H atoms of the adsorbed water molecule migrates to yield two Fe(III)OH groups, which subsequently react with another molecule of dihydrogen to give two water molecules, each adsorbed on one Fe(II) cation, (iii) an isolated Fe(IV) O site is reduced by the same mechanism as the first Fe(IV) O site of a pair of the distant α-oxygen atoms to yield H2O adsorbed on the Fe(II) cation, and (iv) lower reducibility of the Fe(IV) O centers of pairs of the distant α-oxygen atoms with respect to the isolated Fe(IV) O sites.
Název v anglickém jazyce
Proximity Effect on the Reactivity of Dioxygen Activated over Distant Binuclear Fe Sites in Zeolite Matrices
Popis výsledku anglicky
Distant binuclear cationic M(II) centers in transition-metal-exchanged zeolites were shown to activate dioxygen by its splitting at room temperature to form a pair of very active oxygen species (i.e., α-oxygens) able to subsequently oxidize methane to methanol at room temperature. Selective oxidations of methane and other hydrocarbons are of extreme importance because of their potential for the transformation of hydrocarbons to valuable products. The reactivity of the α-oxygens with dihydrogen was investigated to obtain insight into the reactivity of these unique species. The reduction of Fe(IV) O centers of pairs of distant α-oxygen atoms is a model reaction that allows for the study of the effect of the proximity of the other Fe(IV) O site on the reactivity of the α-oxygen. The reduction by dihydrogen is also the key reaction for the quantification of these unique sites by temperature-programmed reduction (TPR) techniques. Our study reveals that (i) there is no direct concurrent reaction of both the Fe(IV) O centers of pairs of the distant α-oxygen atoms with a molecule of dihydrogen, (ii) first, one Fe(IV) O site of a pair of the distant α-oxygen atoms reacts with H2(g) to form a water molecule, which is adsorbed on the Fe(II) cation while the other Fe(IV) O site is intact. Afterward, one of the two H atoms of the adsorbed water molecule migrates to yield two Fe(III)OH groups, which subsequently react with another molecule of dihydrogen to give two water molecules, each adsorbed on one Fe(II) cation, (iii) an isolated Fe(IV) O site is reduced by the same mechanism as the first Fe(IV) O site of a pair of the distant α-oxygen atoms to yield H2O adsorbed on the Fe(II) cation, and (iv) lower reducibility of the Fe(IV) O centers of pairs of the distant α-oxygen atoms with respect to the isolated Fe(IV) O sites.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
1932-7455
Svazek periodika
126
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
4854-4861
Kód UT WoS článku
000776247200014
EID výsledku v databázi Scopus
2-s2.0-85126091546