Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Proximity Effect on the Reactivity of Dioxygen Activated over Distant Binuclear Fe Sites in Zeolite Matrices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00555822" target="_blank" >RIV/61388955:_____/22:00555822 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://hdl.handle.net/11104/0330275" target="_blank" >http://hdl.handle.net/11104/0330275</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.1c10821" target="_blank" >10.1021/acs.jpcc.1c10821</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Proximity Effect on the Reactivity of Dioxygen Activated over Distant Binuclear Fe Sites in Zeolite Matrices

  • Popis výsledku v původním jazyce

    Distant binuclear cationic M(II) centers in transition-metal-exchanged zeolites were shown to activate dioxygen by its splitting at room temperature to form a pair of very active oxygen species (i.e., α-oxygens) able to subsequently oxidize methane to methanol at room temperature. Selective oxidations of methane and other hydrocarbons are of extreme importance because of their potential for the transformation of hydrocarbons to valuable products. The reactivity of the α-oxygens with dihydrogen was investigated to obtain insight into the reactivity of these unique species. The reduction of Fe(IV) O centers of pairs of distant α-oxygen atoms is a model reaction that allows for the study of the effect of the proximity of the other Fe(IV) O site on the reactivity of the α-oxygen. The reduction by dihydrogen is also the key reaction for the quantification of these unique sites by temperature-programmed reduction (TPR) techniques. Our study reveals that (i) there is no direct concurrent reaction of both the Fe(IV) O centers of pairs of the distant α-oxygen atoms with a molecule of dihydrogen, (ii) first, one Fe(IV) O site of a pair of the distant α-oxygen atoms reacts with H2(g) to form a water molecule, which is adsorbed on the Fe(II) cation while the other Fe(IV) O site is intact. Afterward, one of the two H atoms of the adsorbed water molecule migrates to yield two Fe(III)OH groups, which subsequently react with another molecule of dihydrogen to give two water molecules, each adsorbed on one Fe(II) cation, (iii) an isolated Fe(IV) O site is reduced by the same mechanism as the first Fe(IV) O site of a pair of the distant α-oxygen atoms to yield H2O adsorbed on the Fe(II) cation, and (iv) lower reducibility of the Fe(IV) O centers of pairs of the distant α-oxygen atoms with respect to the isolated Fe(IV) O sites.

  • Název v anglickém jazyce

    Proximity Effect on the Reactivity of Dioxygen Activated over Distant Binuclear Fe Sites in Zeolite Matrices

  • Popis výsledku anglicky

    Distant binuclear cationic M(II) centers in transition-metal-exchanged zeolites were shown to activate dioxygen by its splitting at room temperature to form a pair of very active oxygen species (i.e., α-oxygens) able to subsequently oxidize methane to methanol at room temperature. Selective oxidations of methane and other hydrocarbons are of extreme importance because of their potential for the transformation of hydrocarbons to valuable products. The reactivity of the α-oxygens with dihydrogen was investigated to obtain insight into the reactivity of these unique species. The reduction of Fe(IV) O centers of pairs of distant α-oxygen atoms is a model reaction that allows for the study of the effect of the proximity of the other Fe(IV) O site on the reactivity of the α-oxygen. The reduction by dihydrogen is also the key reaction for the quantification of these unique sites by temperature-programmed reduction (TPR) techniques. Our study reveals that (i) there is no direct concurrent reaction of both the Fe(IV) O centers of pairs of the distant α-oxygen atoms with a molecule of dihydrogen, (ii) first, one Fe(IV) O site of a pair of the distant α-oxygen atoms reacts with H2(g) to form a water molecule, which is adsorbed on the Fe(II) cation while the other Fe(IV) O site is intact. Afterward, one of the two H atoms of the adsorbed water molecule migrates to yield two Fe(III)OH groups, which subsequently react with another molecule of dihydrogen to give two water molecules, each adsorbed on one Fe(II) cation, (iii) an isolated Fe(IV) O site is reduced by the same mechanism as the first Fe(IV) O site of a pair of the distant α-oxygen atoms to yield H2O adsorbed on the Fe(II) cation, and (iv) lower reducibility of the Fe(IV) O centers of pairs of the distant α-oxygen atoms with respect to the isolated Fe(IV) O sites.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

    1932-7455

  • Svazek periodika

    126

  • Číslo periodika v rámci svazku

    10

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    4854-4861

  • Kód UT WoS článku

    000776247200014

  • EID výsledku v databázi Scopus

    2-s2.0-85126091546