Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems with matrix-product states
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F21%3A00544964" target="_blank" >RIV/61388955:_____/21:00544964 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0321753" target="_blank" >http://hdl.handle.net/11104/0321753</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.104.075137" target="_blank" >10.1103/PhysRevB.104.075137</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems with matrix-product states
Popis výsledku v původním jazyce
Tensor network methods have progressed from variational techniques based on matrix-product states able to compute properties of one-dimensional condensed-matter lattice models into methods rooted in more elaborate states, such as projected entangled pair states aimed at simulating the physics of two-dimensional models. In this work, we advocate the paradigm that for two-dimensional fermionic models, matrix-product states are still applicable to significantly higher accuracy levels than direct embeddings into one-dimensional systems allow for. To do so, we exploit schemes of fermionic mode transformations and overcome the prejudice that one-dimensional embeddings need to be local. This approach takes the insight seriously that the suitable exploitation of both the manifold of matrix-product states and the unitary manifold of mode transformations can more accurately capture the natural correlation structure. By demonstrating the residual low levels of entanglement in emerging modes, we show that matrix-product states can describe ground states strikingly well. The power of the approach is exemplified by investigating a phase transition of spinless fermions for lattice sizes up to 10 x 10.
Název v anglickém jazyce
Effective dimension reduction with mode transformations: Simulating two-dimensional fermionic condensed matter systems with matrix-product states
Popis výsledku anglicky
Tensor network methods have progressed from variational techniques based on matrix-product states able to compute properties of one-dimensional condensed-matter lattice models into methods rooted in more elaborate states, such as projected entangled pair states aimed at simulating the physics of two-dimensional models. In this work, we advocate the paradigm that for two-dimensional fermionic models, matrix-product states are still applicable to significantly higher accuracy levels than direct embeddings into one-dimensional systems allow for. To do so, we exploit schemes of fermionic mode transformations and overcome the prejudice that one-dimensional embeddings need to be local. This approach takes the insight seriously that the suitable exploitation of both the manifold of matrix-product states and the unitary manifold of mode transformations can more accurately capture the natural correlation structure. By demonstrating the residual low levels of entanglement in emerging modes, we show that matrix-product states can describe ground states strikingly well. The power of the approach is exemplified by investigating a phase transition of spinless fermions for lattice sizes up to 10 x 10.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
2469-9969
Svazek periodika
104
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
075137
Kód UT WoS článku
000686911200002
EID výsledku v databázi Scopus
2-s2.0-85114018739