A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F22%3A00556683" target="_blank" >RIV/61388955:_____/22:00556683 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388963:_____/22:00556683
Výsledek na webu
<a href="https://doi.org/10.1016/j.bbapap.2022.140767" target="_blank" >https://doi.org/10.1016/j.bbapap.2022.140767</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bbapap.2022.140767" target="_blank" >10.1016/j.bbapap.2022.140767</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis
Popis výsledku v původním jazyce
Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aβ peptide, which is known to form senile plaques in Alzheimer's disease, ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aβ, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.
Název v anglickém jazyce
A unifying framework for amyloid-mediated membrane damage: The lipid-chaperone hypothesis
Popis výsledku anglicky
Over the past thirty years, researchers have highlighted the role played by a class of proteins or polypeptides that forms pathogenic amyloid aggregates in vivo, including i) the amyloid Aβ peptide, which is known to form senile plaques in Alzheimer's disease, ii) α-synuclein, responsible for Lewy body formation in Parkinson's disease and iii) IAPP, which is the protein component of type 2 diabetes-associated islet amyloids. These proteins, known as intrinsically disordered proteins (IDPs), are present as highly dynamic conformational ensembles. IDPs can partially (mis) fold into (dys) functional conformations and accumulate as amyloid aggregates upon interaction with other cytosolic partners such as proteins or lipid membranes. In addition, an increasing number of reports link the toxicity of amyloid proteins to their harmful effects on membrane integrity. Still, the molecular mechanism underlying the amyloidogenic proteins transfer from the aqueous environment to the hydrocarbon core of the membrane is poorly understood. This review starts with a historical overview of the toxicity models of amyloidogenic proteins to contextualize the more recent lipid-chaperone hypothesis. Then, we report the early molecular-level events in the aggregation and ion-channel pore formation of Aβ, IAPP, and α-synuclein interacting with model membranes, emphasizing the complexity of these processes due to their different spatial-temporal resolutions. Next, we underline the need for a combined experimental and computational approach, focusing on the strengths and weaknesses of the most commonly used techniques. Finally, the last two chapters highlight the crucial role of lipid-protein complexes as molecular switches among ion-channel-like formation, detergent-like, and fibril formation mechanisms and their implication in fighting amyloidogenic diseases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26854X" target="_blank" >GX19-26854X: Souhra lipidů, iontů a bílkovin a její role v dynamice a funkci buněčných membrán</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biochimica Et Biophysica Acta-Proteins and Proteomics
ISSN
1570-9639
e-ISSN
1878-1454
Svazek periodika
1870
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
140767
Kód UT WoS článku
000820565600003
EID výsledku v databázi Scopus
2-s2.0-85124269550