Evolution of Active Oxygen Species Originating from O2 Cleavage over Fe-FER for Application in Methane Oxidation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F23%3A00569095" target="_blank" >RIV/61388955:_____/23:00569095 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0340418" target="_blank" >https://hdl.handle.net/11104/0340418</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acscatal.2c06099" target="_blank" >10.1021/acscatal.2c06099</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolution of Active Oxygen Species Originating from O2 Cleavage over Fe-FER for Application in Methane Oxidation
Popis výsledku v původním jazyce
Here, we show a spectroscopic study of the formation and oxidation properties of α-oxygen originating from O2 dissociation over binuclear Fe(II) structure in Fe-ferrierite. The investigation of its formation, stability, and methane oxidation properties toward methanol formation at elevated temperatures was confirmed by in situ FTIR spectroscopy and mass spectrometry. For a deeper insight into the redox properties of Fe centers embedded in ferrierite, Mössbauer and X-ray adsorption spectroscopies were used as complementary methods. In situ FTIR spectroscopy and activity test results recorded at elevated temperatures convenient for potential industrial applications (through-flow reactor, 220 °C) showed that binuclear Fe(II) centers in FER can split O2 and form stable species [Fe(IV)=O]2+ active in three consecutive cycles in methane to methanol oxidation. Those results were confirmed by changes in the values of hyperfine parameters of iron species in ferrierite in Mössbauer spectra and by changes in the Fe K-edge XAS spectrum recorded under redox conditions.
Název v anglickém jazyce
Evolution of Active Oxygen Species Originating from O2 Cleavage over Fe-FER for Application in Methane Oxidation
Popis výsledku anglicky
Here, we show a spectroscopic study of the formation and oxidation properties of α-oxygen originating from O2 dissociation over binuclear Fe(II) structure in Fe-ferrierite. The investigation of its formation, stability, and methane oxidation properties toward methanol formation at elevated temperatures was confirmed by in situ FTIR spectroscopy and mass spectrometry. For a deeper insight into the redox properties of Fe centers embedded in ferrierite, Mössbauer and X-ray adsorption spectroscopies were used as complementary methods. In situ FTIR spectroscopy and activity test results recorded at elevated temperatures convenient for potential industrial applications (through-flow reactor, 220 °C) showed that binuclear Fe(II) centers in FER can split O2 and form stable species [Fe(IV)=O]2+ active in three consecutive cycles in methane to methanol oxidation. Those results were confirmed by changes in the values of hyperfine parameters of iron species in ferrierite in Mössbauer spectra and by changes in the Fe K-edge XAS spectrum recorded under redox conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-02901S" target="_blank" >GA19-02901S: Inovativní přístupy pro využití metanu - enzymy inspirované zeolitické katalyzátory</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Catalysis
ISSN
2155-5435
e-ISSN
2155-5435
Svazek periodika
13
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
3345-3355
Kód UT WoS článku
000944557600001
EID výsledku v databázi Scopus
2-s2.0-85148897545