Titanium-Dioxide-Based Photocatalysts for Efficient Hydrogen Production
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388955%3A_____%2F24%3A00586727" target="_blank" >RIV/61388955:_____/24:00586727 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/bk-2024-1468.ch010" target="_blank" >http://dx.doi.org/10.1021/bk-2024-1468.ch010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/bk-2024-1468.ch010" target="_blank" >10.1021/bk-2024-1468.ch010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Titanium-Dioxide-Based Photocatalysts for Efficient Hydrogen Production
Popis výsledku v původním jazyce
Expanding industries and manufacturing sectors heavily rely on non-renewable energy resources leading to escalating pollution and substantial harm to the environment. To tackle this challenge, it is imperative to undertake two crucial measures, first to reduce the use of fossil fuels, and second to replace fossil fuels with environmentally cleaner alternatives. Photocatalytic hydrogen production via water splitting is a renewable, sustainable, and promising technology to produce clean and green hydrogen with negligible impact on the environment. Titanium dioxide (TiO2)-based photocatalysts are most promising and widely used photocatalytic materials for hydrogen production due to high abundance, non-toxicity, low cost, and photostability. However, the wide bandgap and higher recombination rate of charge carriers restricted the photocatalytic efficiency of TiO2. For that, rational strategies such as doping with metals and nonmetals, the influence of facets, morphologies, phases, and defect engineering on TiO2-based photocatalysts has been discussed in detail. Additionally, this book chapter summarizes the fundamentals and mechanistic understanding of light driven photocatalytic H2 production. The investigations were further extended to study the influence of various parameters such as use of sacrificial agents, cocatalysts, light intensities on photocatalytic performance of TiO2-based photocatalysts. Finally, we delved into the industrial application of TiO2-based photocatalysts for hydrogen production, aiming to assess the current stage of development and identify areas for improvement to enhance its overall efficiency.
Název v anglickém jazyce
Titanium-Dioxide-Based Photocatalysts for Efficient Hydrogen Production
Popis výsledku anglicky
Expanding industries and manufacturing sectors heavily rely on non-renewable energy resources leading to escalating pollution and substantial harm to the environment. To tackle this challenge, it is imperative to undertake two crucial measures, first to reduce the use of fossil fuels, and second to replace fossil fuels with environmentally cleaner alternatives. Photocatalytic hydrogen production via water splitting is a renewable, sustainable, and promising technology to produce clean and green hydrogen with negligible impact on the environment. Titanium dioxide (TiO2)-based photocatalysts are most promising and widely used photocatalytic materials for hydrogen production due to high abundance, non-toxicity, low cost, and photostability. However, the wide bandgap and higher recombination rate of charge carriers restricted the photocatalytic efficiency of TiO2. For that, rational strategies such as doping with metals and nonmetals, the influence of facets, morphologies, phases, and defect engineering on TiO2-based photocatalysts has been discussed in detail. Additionally, this book chapter summarizes the fundamentals and mechanistic understanding of light driven photocatalytic H2 production. The investigations were further extended to study the influence of various parameters such as use of sacrificial agents, cocatalysts, light intensities on photocatalytic performance of TiO2-based photocatalysts. Finally, we delved into the industrial application of TiO2-based photocatalysts for hydrogen production, aiming to assess the current stage of development and identify areas for improvement to enhance its overall efficiency.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
ACS Symposium Series
ISBN
9780841296701
Počet stran výsledku
23
Strana od-do
255-277
Počet stran knihy
551
Název nakladatele
ACS
Místo vydání
New York
Kód UT WoS kapitoly
—