Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Experimental and modelling studies on the photocatalytic generation of hydrogen during water-splitting over a commercial TiO2 photocatalyst P25

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27710%2F21%3A10247944" target="_blank" >RIV/61989100:27710/21:10247944 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22340/21:43923010

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0196890421007585" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0196890421007585</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enconman.2021.114582" target="_blank" >10.1016/j.enconman.2021.114582</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Experimental and modelling studies on the photocatalytic generation of hydrogen during water-splitting over a commercial TiO2 photocatalyst P25

  • Popis výsledku v původním jazyce

    Hydrogen, generally perceived as an environmentally friendly fuel, possesses the potential to lower society&apos;s dependency on fossil energy sources whose utilization leads inherently to global warming problems. Its photocatalytic generation from aqueous solutions is a promising green technology competitive to traditionally employed methods such as steam reforming or water electrolysis. However, the limiting yet achievable efficiencies of this process remain unclear. To address the question of process efficiencies, we formulate a phenomenological model predicting the behavior of an experimental photocatalytic reactor. The model considers the polynomial light intensity distribution, the concentration of photocatalysts, and the finite rate of the mass transfer between liquid and gas phases. We validate the model against experimental data obtained from a study with a commercially available TiO2 P25 photocatalyst used as a gold standard in photocatalysis. The theoretical analysis shows that the mass transfer of hydrogen from the liquid to gas phase significantly affects the photoreactor dynamics. Initial accumulation of hydrogen in the liquid phase and its delayed transport to the gas phase result in a nonlinear time-dependence of the hydrogen concentration in the gas phase. The theoretical average reaction rate reaches a maximum for a photocatalyst concentration of 0.23 g/L, which is in good agreement with an experimentally obtained value of 0.25 g/L. The photonic efficiency, defined as a ratio of the average reaction rate to the average light intensity, also reaches a maximum at the same catalyst concentration and interestingly remains constant for any higher TiO2 loads. Finding the optimal photocatalyst concentration and identifying the critical role of mass transfer shall aid further research in developing and optimizing photocatalytic reactors for hydrogen production in the future.

  • Název v anglickém jazyce

    Experimental and modelling studies on the photocatalytic generation of hydrogen during water-splitting over a commercial TiO2 photocatalyst P25

  • Popis výsledku anglicky

    Hydrogen, generally perceived as an environmentally friendly fuel, possesses the potential to lower society&apos;s dependency on fossil energy sources whose utilization leads inherently to global warming problems. Its photocatalytic generation from aqueous solutions is a promising green technology competitive to traditionally employed methods such as steam reforming or water electrolysis. However, the limiting yet achievable efficiencies of this process remain unclear. To address the question of process efficiencies, we formulate a phenomenological model predicting the behavior of an experimental photocatalytic reactor. The model considers the polynomial light intensity distribution, the concentration of photocatalysts, and the finite rate of the mass transfer between liquid and gas phases. We validate the model against experimental data obtained from a study with a commercially available TiO2 P25 photocatalyst used as a gold standard in photocatalysis. The theoretical analysis shows that the mass transfer of hydrogen from the liquid to gas phase significantly affects the photoreactor dynamics. Initial accumulation of hydrogen in the liquid phase and its delayed transport to the gas phase result in a nonlinear time-dependence of the hydrogen concentration in the gas phase. The theoretical average reaction rate reaches a maximum for a photocatalyst concentration of 0.23 g/L, which is in good agreement with an experimentally obtained value of 0.25 g/L. The photonic efficiency, defined as a ratio of the average reaction rate to the average light intensity, also reaches a maximum at the same catalyst concentration and interestingly remains constant for any higher TiO2 loads. Finding the optimal photocatalyst concentration and identifying the critical role of mass transfer shall aid further research in developing and optimizing photocatalytic reactors for hydrogen production in the future.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20402 - Chemical process engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy Conversion and Management

  • ISSN

    0196-8904

  • e-ISSN

  • Svazek periodika

    245

  • Číslo periodika v rámci svazku

    October

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    9

  • Strana od-do

  • Kód UT WoS článku

    000693426900007

  • EID výsledku v databázi Scopus