Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F13%3A00396144" target="_blank" >RIV/61388963:_____/13:00396144 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/ct400282h" target="_blank" >http://dx.doi.org/10.1021/ct400282h</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/ct400282h" target="_blank" >10.1021/ct400282h</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions
Popis výsledku v původním jazyce
Car-Parrinello molecular dynamics simulations were performed for N-methyl acetamide as a small test system for amide groups in protein backbones, and NMR chemical shifts were calculated based on the generated ensemble. If conformational sampling and explicit solvent molecules are taken into account, excellent agreement between the calculated and experimental chemical shifts is obtained. These results represent a landmark improvement over calculations based on classical molecular dynamics (MD) simulations especially for amide protons, which are predicted too high-field shifted based on the latter ensembles. We were able to show that the better results are caused by the solute-solvents interactions forming shorter hydrogen bonds as well as by the internal degrees of freedom of the solute. Inspired by these results, we propose our approach as a new tool for the validation of force fields due to its power of identifying the structural reasons for discrepancies between the experimental and
Název v anglickém jazyce
Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions
Popis výsledku anglicky
Car-Parrinello molecular dynamics simulations were performed for N-methyl acetamide as a small test system for amide groups in protein backbones, and NMR chemical shifts were calculated based on the generated ensemble. If conformational sampling and explicit solvent molecules are taken into account, excellent agreement between the calculated and experimental chemical shifts is obtained. These results represent a landmark improvement over calculations based on classical molecular dynamics (MD) simulations especially for amide protons, which are predicted too high-field shifted based on the latter ensembles. We were able to show that the better results are caused by the solute-solvents interactions forming shorter hydrogen bonds as well as by the internal degrees of freedom of the solute. Inspired by these results, we propose our approach as a new tool for the validation of force fields due to its power of identifying the structural reasons for discrepancies between the experimental and
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-24880S" target="_blank" >GA13-24880S: Struktura a vlastnosti modifikovaných složek nukleových kyselin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
3806-3815
Kód UT WoS článku
000323193500052
EID výsledku v databázi Scopus
—