New Insight into the Nature of Bonding in the Dimers of Lappert's Stannylene and Its Ge Analogs: A Quantum Mechanical Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F16%3A00459398" target="_blank" >RIV/61388963:_____/16:00459398 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/16:33161582 RIV/00216275:25310/16:39901642
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acs.jctc.6b00065" target="_blank" >http://dx.doi.org/10.1021/acs.jctc.6b00065</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jctc.6b00065" target="_blank" >10.1021/acs.jctc.6b00065</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New Insight into the Nature of Bonding in the Dimers of Lappert's Stannylene and Its Ge Analogs: A Quantum Mechanical Study
Popis výsledku v původním jazyce
The strength and nature of the connection in Lappert's stannylene dimer ({Sn[CH(SiMe3)(2)](2)}(2)) and its smaller analogs, simplified stannylenes, as well as similar Ge complexes were studied by means of DFT-D3 calculations, energy decomposition analysis (EDA), electrostatic potential (ESP), and natural population analysis. The trans-bent structure of the investigated molecules was rationalized by means of EDA, ESP, and molecular orbital (MO) analyses. The different ESPs for the monomers studied are a result of different hybridization of the Sn (Ge) atoms. The comparably strong stabilization in the largest and the smallest systems with a dramatically different substituent size is explained by the different nature of the binding between monomers. For all complexes, it has been found that the total attractive interaction is mostly provided by the electrostatic component (>50%), followed by orbital interaction and dispersion. In the largest molecule (Lappert's stannylene), the dispersion interaction plays a more significant role in stabilization and its magnitude is comparable to that of orbital interaction; on the other hand in the smallest molecule (SnH2), where bulky substituents are replaced by H only, the dispersion energy is less important and the E-E bond is more of a charge transfer character, caused by donor-acceptor orbital interactions. The charge transfer in Ge dimers is greater than in the Sn ones due to shorter distances between monomers, which cause better (HOMO/LUMO) overlaps. The easier dimerization of Lappert's stannylene as compared to Kira's ({Sn[(Me3Si)(2)CHCH2CH2CH(SiMe3)(2)-x(2)C,C']}) stannylene is explained by the different orientation of their substituents-asymmetry promotes dimerization.
Název v anglickém jazyce
New Insight into the Nature of Bonding in the Dimers of Lappert's Stannylene and Its Ge Analogs: A Quantum Mechanical Study
Popis výsledku anglicky
The strength and nature of the connection in Lappert's stannylene dimer ({Sn[CH(SiMe3)(2)](2)}(2)) and its smaller analogs, simplified stannylenes, as well as similar Ge complexes were studied by means of DFT-D3 calculations, energy decomposition analysis (EDA), electrostatic potential (ESP), and natural population analysis. The trans-bent structure of the investigated molecules was rationalized by means of EDA, ESP, and molecular orbital (MO) analyses. The different ESPs for the monomers studied are a result of different hybridization of the Sn (Ge) atoms. The comparably strong stabilization in the largest and the smallest systems with a dramatically different substituent size is explained by the different nature of the binding between monomers. For all complexes, it has been found that the total attractive interaction is mostly provided by the electrostatic component (>50%), followed by orbital interaction and dispersion. In the largest molecule (Lappert's stannylene), the dispersion interaction plays a more significant role in stabilization and its magnitude is comparable to that of orbital interaction; on the other hand in the smallest molecule (SnH2), where bulky substituents are replaced by H only, the dispersion energy is less important and the E-E bond is more of a charge transfer character, caused by donor-acceptor orbital interactions. The charge transfer in Ge dimers is greater than in the Sn ones due to shorter distances between monomers, which cause better (HOMO/LUMO) overlaps. The easier dimerization of Lappert's stannylene as compared to Kira's ({Sn[(Me3Si)(2)CHCH2CH2CH(SiMe3)(2)-x(2)C,C']}) stannylene is explained by the different orientation of their substituents-asymmetry promotes dimerization.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Theory and Computation
ISSN
1549-9618
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1696-1704
Kód UT WoS článku
000374196400027
EID výsledku v databázi Scopus
2-s2.0-84964529955