Directional Charge Transport in Layered Two-Dimensional Triazine-Based Graphitic Carbon Nitride
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F19%3A00508576" target="_blank" >RIV/61388963:_____/19:00508576 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201902314" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201902314</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/anie.201902314" target="_blank" >10.1002/anie.201902314</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Directional Charge Transport in Layered Two-Dimensional Triazine-Based Graphitic Carbon Nitride
Popis výsledku v původním jazyce
Triazine-based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene-type, two-dimensional, and metal-free materials. Although hailed as a promising low-band-gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction-dependent electrical measurements and time-resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge-carrier mobilities in this layered material beyond graphene. Electrical conductivity along the basal plane of TGCN is 65 times lower than through the stacked layers, as opposed to graphite. Furthermore, we develop a model for this charge-transport behavior based on observed carrier dynamics and random-walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction-dependent layered semiconductor for applications in field-effect transistors (FETs) and sensors.
Název v anglickém jazyce
Directional Charge Transport in Layered Two-Dimensional Triazine-Based Graphitic Carbon Nitride
Popis výsledku anglicky
Triazine-based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene-type, two-dimensional, and metal-free materials. Although hailed as a promising low-band-gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction-dependent electrical measurements and time-resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge-carrier mobilities in this layered material beyond graphene. Electrical conductivity along the basal plane of TGCN is 65 times lower than through the stacked layers, as opposed to graphite. Furthermore, we develop a model for this charge-transport behavior based on observed carrier dynamics and random-walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction-dependent layered semiconductor for applications in field-effect transistors (FETs) and sensors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Angewandte Chemie - International Edition
ISSN
1433-7851
e-ISSN
—
Svazek periodika
58
Číslo periodika v rámci svazku
28
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
5
Strana od-do
9394-9398
Kód UT WoS článku
000476610900011
EID výsledku v databázi Scopus
2-s2.0-85067385515