A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F20%3A00531628" target="_blank" >RIV/61388963:_____/20:00531628 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0017775" target="_blank" >https://doi.org/10.1063/5.0017775</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0017775" target="_blank" >10.1063/5.0017775</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization
Popis výsledku v původním jazyce
Molecular simulations can elucidate atomistic-level mechanisms of key biological processes, which are often hardly accessible to experiment. However, the results of the simulations can only be as trustworthy as the underlying simulation model. In many of these processes, interactions between charged moieties play a critical role. Current empirical force fields tend to overestimate such interactions, often in a dramatic way, when polyvalent ions are involved. The source of this shortcoming is the missing electronic polarization in these models. Given the importance of such biomolecular systems, there is great interest in fixing this deficiency in a computationally inexpensive way without employing explicitly polarizable force fields. Here, we review the electronic continuum correction approach, which accounts for electronic polarization in a mean-field way, focusing on its charge scaling variant. We show that by pragmatically scaling only the charged molecular groups, we qualitatively improve the charge–charge interactions without extra computational costs and benefit from decades of force field development on biomolecular force fields.
Název v anglickém jazyce
A practical guide to biologically relevant molecular simulations with charge scaling for electronic polarization
Popis výsledku anglicky
Molecular simulations can elucidate atomistic-level mechanisms of key biological processes, which are often hardly accessible to experiment. However, the results of the simulations can only be as trustworthy as the underlying simulation model. In many of these processes, interactions between charged moieties play a critical role. Current empirical force fields tend to overestimate such interactions, often in a dramatic way, when polyvalent ions are involved. The source of this shortcoming is the missing electronic polarization in these models. Given the importance of such biomolecular systems, there is great interest in fixing this deficiency in a computationally inexpensive way without employing explicitly polarizable force fields. Here, we review the electronic continuum correction approach, which accounts for electronic polarization in a mean-field way, focusing on its charge scaling variant. We show that by pragmatically scaling only the charged molecular groups, we qualitatively improve the charge–charge interactions without extra computational costs and benefit from decades of force field development on biomolecular force fields.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Svazek periodika
153
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
050901
Kód UT WoS článku
000559816300001
EID výsledku v databázi Scopus
2-s2.0-85089261949