3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F23%3A00571080" target="_blank" >RIV/61388963:_____/23:00571080 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1039/D3RA00281K" target="_blank" >https://doi.org/10.1039/D3RA00281K</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3ra00281k" target="_blank" >10.1039/d3ra00281k</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
Popis výsledku v původním jazyce
Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement.
Název v anglickém jazyce
3DProtDTA: a deep learning model for drug-target affinity prediction based on residue-level protein graphs
Popis výsledku anglicky
Accurate prediction of the drug-target affinity (DTA) in silico is of critical importance for modern drug discovery. Computational methods of DTA prediction, applied in the early stages of drug development, are able to speed it up and cut its cost significantly. A wide range of approaches based on machine learning were recently proposed for DTA assessment. The most promising of them are based on deep learning techniques and graph neural networks to encode molecular structures. The recent breakthrough in protein structure prediction made by AlphaFold made an unprecedented amount of proteins without experimentally defined structures accessible for computational DTA prediction. In this work, we propose a new deep learning DTA model 3DProtDTA, which utilises AlphaFold structure predictions in conjunction with the graph representation of proteins. The model is superior to its rivals on common benchmarking datasets and has potential for further improvement.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RSC Advances
ISSN
2046-2069
e-ISSN
2046-2069
Svazek periodika
13
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
10261-10272
Kód UT WoS článku
000960996800001
EID výsledku v databázi Scopus
2-s2.0-85165325224