When will RNA get its AlphaFold moment?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F86652036%3A_____%2F23%3A00582988" target="_blank" >RIV/86652036:_____/23:00582988 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/nar/article/51/18/9522/7272628?login=true" target="_blank" >https://academic.oup.com/nar/article/51/18/9522/7272628?login=true</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/nar/gkad726" target="_blank" >10.1093/nar/gkad726</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
When will RNA get its AlphaFold moment?
Popis výsledku v původním jazyce
The protein structure prediction problem has been solved for many types of proteins by AlphaFold. Recently, there has been considerable excitement to build off the success of AlphaFold and predict the 3D structures of RNAs. RNA prediction methods use a variety of techniques, from physics-based to machine learning approaches. We believe that there are challenges preventing the successful development of deep learning-based methods like AlphaFold for RNA in the short term. Broadly speaking, the challenges are the limited number of structures and alignments making data-hungry deep learning methods unlikely to succeed. Additionally, there are several issues with the existing structure and sequence data, as they are often of insufficient quality, highly biased and missing key information. Here, we discuss these challenges in detail and suggest some steps to remedy the situation. We believe that it is possible to create an accurate RNA structure prediction method, but it will require solving several data quality and volume issues, usage of data beyond simple sequence alignments, or the development of new less data-hungry machine learning methods.
Název v anglickém jazyce
When will RNA get its AlphaFold moment?
Popis výsledku anglicky
The protein structure prediction problem has been solved for many types of proteins by AlphaFold. Recently, there has been considerable excitement to build off the success of AlphaFold and predict the 3D structures of RNAs. RNA prediction methods use a variety of techniques, from physics-based to machine learning approaches. We believe that there are challenges preventing the successful development of deep learning-based methods like AlphaFold for RNA in the short term. Broadly speaking, the challenges are the limited number of structures and alignments making data-hungry deep learning methods unlikely to succeed. Additionally, there are several issues with the existing structure and sequence data, as they are often of insufficient quality, highly biased and missing key information. Here, we discuss these challenges in detail and suggest some steps to remedy the situation. We believe that it is possible to create an accurate RNA structure prediction method, but it will require solving several data quality and volume issues, usage of data beyond simple sequence alignments, or the development of new less data-hungry machine learning methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2023055" target="_blank" >LM2023055: Česká národní infrastruktura pro biologická data</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nucleic Acids Research
ISSN
0305-1048
e-ISSN
1362-4962
Svazek periodika
51
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
9522-9352
Kód UT WoS článku
001064570800001
EID výsledku v databázi Scopus
2-s2.0-85175135995