Hyaluronan-arginine enhanced and dynamic interaction emerges from distinctive molecular signature due to electrostatics and side-chain specificity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00578077" target="_blank" >RIV/61388963:_____/24:00578077 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.carbpol.2023.121568" target="_blank" >https://doi.org/10.1016/j.carbpol.2023.121568</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.carbpol.2023.121568" target="_blank" >10.1016/j.carbpol.2023.121568</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hyaluronan-arginine enhanced and dynamic interaction emerges from distinctive molecular signature due to electrostatics and side-chain specificity
Popis výsledku v původním jazyce
Hyaluronan is a natural carbohydrate polymer with a negative charge that fosters gel-like conditions crucial for its cellular functions and industrial applications. As a recognized ligand for proteins, understanding their mutual interactions provides solid ground to tune hyaluronan's gel properties using biocompatible peptides. This work employs NMR and molecular dynamics simulations to identify molecular motifs relevant to hyaluronan–peptide interactions using arginine, lysine, and glycine oligopeptides. Arginine-rich peptides exhibit the strongest binding to hyaluronan according to chemical shift perturbation measurements, followed distantly by the similarly charged lysine. This difference highlights the significance of electrostatics and the peculiarities of the guanidinium side chain in arginine, capable of non-polar interactions that further stabilize the binding. Additional nuclear Overhauser effect measurements do not show stable interaction partners, precluding strong and well-defined complexes. Finally, molecular simulations support our findings and show an extended but significant interaction region, especially for arginine, responsible for the observed enhanced binding, which can also promote cross-linking of hyaluronan polymers. Our findings pave the way for optimizing biocompatible peptides to alter hyaluronan gels' properties efficiently and also explain why hyaluronan–protein interaction typically involves positively charged arginine-rich regions also capable of forming hydrogen bonds and non-polar interactions.
Název v anglickém jazyce
Hyaluronan-arginine enhanced and dynamic interaction emerges from distinctive molecular signature due to electrostatics and side-chain specificity
Popis výsledku anglicky
Hyaluronan is a natural carbohydrate polymer with a negative charge that fosters gel-like conditions crucial for its cellular functions and industrial applications. As a recognized ligand for proteins, understanding their mutual interactions provides solid ground to tune hyaluronan's gel properties using biocompatible peptides. This work employs NMR and molecular dynamics simulations to identify molecular motifs relevant to hyaluronan–peptide interactions using arginine, lysine, and glycine oligopeptides. Arginine-rich peptides exhibit the strongest binding to hyaluronan according to chemical shift perturbation measurements, followed distantly by the similarly charged lysine. This difference highlights the significance of electrostatics and the peculiarities of the guanidinium side chain in arginine, capable of non-polar interactions that further stabilize the binding. Additional nuclear Overhauser effect measurements do not show stable interaction partners, precluding strong and well-defined complexes. Finally, molecular simulations support our findings and show an extended but significant interaction region, especially for arginine, responsible for the observed enhanced binding, which can also promote cross-linking of hyaluronan polymers. Our findings pave the way for optimizing biocompatible peptides to alter hyaluronan gels' properties efficiently and also explain why hyaluronan–protein interaction typically involves positively charged arginine-rich regions also capable of forming hydrogen bonds and non-polar interactions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-19561S" target="_blank" >GA19-19561S: Zkoumání fundamentálních molekulárních interakcí ovliňujících strukturu glykokalyxu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Carbohydrate Polymers
ISSN
0144-8617
e-ISSN
1879-1344
Svazek periodika
325
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
121568
Kód UT WoS článku
001119781300001
EID výsledku v databázi Scopus
2-s2.0-85177228397