Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00580553" target="_blank" >RIV/61388963:_____/24:00580553 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/24:10473753 RIV/00216208:11110/24:10473753

  • Výsledek na webu

    <a href="https://doi.org/10.1021/acs.chemmater.3c01574" target="_blank" >https://doi.org/10.1021/acs.chemmater.3c01574</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.chemmater.3c01574" target="_blank" >10.1021/acs.chemmater.3c01574</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study

  • Popis výsledku v původním jazyce

    Cross-linked gelatin-based hydrogels are highly promising cell-interactive, biocompatible, and biodegradable materials serving tissue engineering. Moreover, gelatins with covalently bound methacrylamide (gel-MA) and 2-aminoethyl methacrylate moieties (gel-AEMA) can be cross-linked through ultraviolet (UV) irradiation, which allows light-based three-dimensional (3D)-printing of such hydrogels. Furthermore, the physicochemical and biological properties of these hydrogels can be broadly tuned by incorporating various comonomers into the polymer chains, which makes these hydrogels a widely applicable platform in tissue engineering and reconstructive surgery. However, monitoring the degradation rate of hydrogel-based implants in vivo is challenging, thereby prohibiting their broad clinical transition and further research. Therefore, herein, we describe the synthesis of 3D-printable gelatin-based hydrogels with N-(2,2-difluoroethyl)acrylamide (DFEA), detectable with the chemical shift of −123 ppm, which enables us to monitor these implants in vivo with 19F magnetic resonance imaging (MRI) and assess their degradation kinetics. Next, we describe the physicochemical and biological properties of these hydrogels. Adding DFEA monomers into the reaction mixture accelerates their cross-linking kinetics. Moreover, increasing the DFEA content within the hydrogels increases their swelling ratio and 19F MRI signal. All hydrogels were detectable at small quantities (<16 mg) using 19F MRI. Moreover, our hydrogels supported the cell proliferation of adipose tissue-derived stem cells (ASCs) and had tunable biodegradation rates. Finally, we present a strategy for increasing the DFEA content without affecting the mechanical properties. Our results may be implemented in the future development of hydrogel implants, whose fate and biodegradation rate can be monitored via 19F MRI.

  • Název v anglickém jazyce

    Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study

  • Popis výsledku anglicky

    Cross-linked gelatin-based hydrogels are highly promising cell-interactive, biocompatible, and biodegradable materials serving tissue engineering. Moreover, gelatins with covalently bound methacrylamide (gel-MA) and 2-aminoethyl methacrylate moieties (gel-AEMA) can be cross-linked through ultraviolet (UV) irradiation, which allows light-based three-dimensional (3D)-printing of such hydrogels. Furthermore, the physicochemical and biological properties of these hydrogels can be broadly tuned by incorporating various comonomers into the polymer chains, which makes these hydrogels a widely applicable platform in tissue engineering and reconstructive surgery. However, monitoring the degradation rate of hydrogel-based implants in vivo is challenging, thereby prohibiting their broad clinical transition and further research. Therefore, herein, we describe the synthesis of 3D-printable gelatin-based hydrogels with N-(2,2-difluoroethyl)acrylamide (DFEA), detectable with the chemical shift of −123 ppm, which enables us to monitor these implants in vivo with 19F magnetic resonance imaging (MRI) and assess their degradation kinetics. Next, we describe the physicochemical and biological properties of these hydrogels. Adding DFEA monomers into the reaction mixture accelerates their cross-linking kinetics. Moreover, increasing the DFEA content within the hydrogels increases their swelling ratio and 19F MRI signal. All hydrogels were detectable at small quantities (<16 mg) using 19F MRI. Moreover, our hydrogels supported the cell proliferation of adipose tissue-derived stem cells (ASCs) and had tunable biodegradation rates. Finally, we present a strategy for increasing the DFEA content without affecting the mechanical properties. Our results may be implemented in the future development of hydrogel implants, whose fate and biodegradation rate can be monitored via 19F MRI.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemistry of Materials

  • ISSN

    0897-4756

  • e-ISSN

    1520-5002

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    183-196

  • Kód UT WoS článku

    001139461500001

  • EID výsledku v databázi Scopus

    2-s2.0-85179039557