Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00580553" target="_blank" >RIV/61388963:_____/24:00580553 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10473753 RIV/00216208:11110/24:10473753
Výsledek na webu
<a href="https://doi.org/10.1021/acs.chemmater.3c01574" target="_blank" >https://doi.org/10.1021/acs.chemmater.3c01574</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.chemmater.3c01574" target="_blank" >10.1021/acs.chemmater.3c01574</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study
Popis výsledku v původním jazyce
Cross-linked gelatin-based hydrogels are highly promising cell-interactive, biocompatible, and biodegradable materials serving tissue engineering. Moreover, gelatins with covalently bound methacrylamide (gel-MA) and 2-aminoethyl methacrylate moieties (gel-AEMA) can be cross-linked through ultraviolet (UV) irradiation, which allows light-based three-dimensional (3D)-printing of such hydrogels. Furthermore, the physicochemical and biological properties of these hydrogels can be broadly tuned by incorporating various comonomers into the polymer chains, which makes these hydrogels a widely applicable platform in tissue engineering and reconstructive surgery. However, monitoring the degradation rate of hydrogel-based implants in vivo is challenging, thereby prohibiting their broad clinical transition and further research. Therefore, herein, we describe the synthesis of 3D-printable gelatin-based hydrogels with N-(2,2-difluoroethyl)acrylamide (DFEA), detectable with the chemical shift of −123 ppm, which enables us to monitor these implants in vivo with 19F magnetic resonance imaging (MRI) and assess their degradation kinetics. Next, we describe the physicochemical and biological properties of these hydrogels. Adding DFEA monomers into the reaction mixture accelerates their cross-linking kinetics. Moreover, increasing the DFEA content within the hydrogels increases their swelling ratio and 19F MRI signal. All hydrogels were detectable at small quantities (<16 mg) using 19F MRI. Moreover, our hydrogels supported the cell proliferation of adipose tissue-derived stem cells (ASCs) and had tunable biodegradation rates. Finally, we present a strategy for increasing the DFEA content without affecting the mechanical properties. Our results may be implemented in the future development of hydrogel implants, whose fate and biodegradation rate can be monitored via 19F MRI.
Název v anglickém jazyce
Cell-Interactive Gelatin-Based 19F MRI Tracers: An In Vitro Proof-of-Concept Study
Popis výsledku anglicky
Cross-linked gelatin-based hydrogels are highly promising cell-interactive, biocompatible, and biodegradable materials serving tissue engineering. Moreover, gelatins with covalently bound methacrylamide (gel-MA) and 2-aminoethyl methacrylate moieties (gel-AEMA) can be cross-linked through ultraviolet (UV) irradiation, which allows light-based three-dimensional (3D)-printing of such hydrogels. Furthermore, the physicochemical and biological properties of these hydrogels can be broadly tuned by incorporating various comonomers into the polymer chains, which makes these hydrogels a widely applicable platform in tissue engineering and reconstructive surgery. However, monitoring the degradation rate of hydrogel-based implants in vivo is challenging, thereby prohibiting their broad clinical transition and further research. Therefore, herein, we describe the synthesis of 3D-printable gelatin-based hydrogels with N-(2,2-difluoroethyl)acrylamide (DFEA), detectable with the chemical shift of −123 ppm, which enables us to monitor these implants in vivo with 19F magnetic resonance imaging (MRI) and assess their degradation kinetics. Next, we describe the physicochemical and biological properties of these hydrogels. Adding DFEA monomers into the reaction mixture accelerates their cross-linking kinetics. Moreover, increasing the DFEA content within the hydrogels increases their swelling ratio and 19F MRI signal. All hydrogels were detectable at small quantities (<16 mg) using 19F MRI. Moreover, our hydrogels supported the cell proliferation of adipose tissue-derived stem cells (ASCs) and had tunable biodegradation rates. Finally, we present a strategy for increasing the DFEA content without affecting the mechanical properties. Our results may be implemented in the future development of hydrogel implants, whose fate and biodegradation rate can be monitored via 19F MRI.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemistry of Materials
ISSN
0897-4756
e-ISSN
1520-5002
Svazek periodika
36
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
183-196
Kód UT WoS článku
001139461500001
EID výsledku v databázi Scopus
2-s2.0-85179039557