19F MRI In Vivo Monitoring of Gelatin-Based Hydrogels: 3D Scaffolds with Tunable Biodegradation toward Regenerative Medicine
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00585751" target="_blank" >RIV/61388963:_____/24:00585751 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389013:_____/24:00585751 RIV/00216208:11110/24:10482618 RIV/00064165:_____/24:10482618
Výsledek na webu
<a href="https://doi.org/10.1021/acs.chemmater.3c03321" target="_blank" >https://doi.org/10.1021/acs.chemmater.3c03321</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.chemmater.3c03321" target="_blank" >10.1021/acs.chemmater.3c03321</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
19F MRI In Vivo Monitoring of Gelatin-Based Hydrogels: 3D Scaffolds with Tunable Biodegradation toward Regenerative Medicine
Popis výsledku v původním jazyce
Gelatin-based hydrogels emerged as promising biodegradable cell-compatible 3D-printable materials with tunable mechanical properties that serve tissue engineering and applications in regenerative medicine. Nevertheless, these materials are very challenging to monitor in vivo, which has hampered the further development of these materials and their translation into clinical practice. To overcome this limitation, we designed a cross-linked 3D-printable gelatin-based hydrogel endowed with poly[N-(2,2-difluoroethyl)acrylamide] (PDFEA). Such PDFEA-containing hydrogels can be monitored in vivo through fluorine-19 magnetic resonance imaging (19F MRI), which enables to monitor such implants in vivo and to assess their in vivo biodegradation kinetics. Herein, we prepared three different PDFEA-containing hydrogels with varying cross-linking degrees and studied their physicochemical properties (storage modulus, Young’s modulus, swelling ratio, in vitro degradation rate). Next, we administered these samples subcutaneously into mice and exploited 19F MRI to detect the biodegradation kinetics over 370 days. Hydrogels with a high cross-linking degree did not extensively degrade in vitro nor in vivo within the evaluated time frame. In contrast, hydrogels characterized by a low degree of cross-linking extensively degraded in vitro as well as in vivo (half-life of 228 ± 21 days). We demonstrated that endowing hydrogels with PDFEA enables monitoring of these hydrogels in vivo. Our results may become a benchmark in forthcoming studies of biodegradable hydrogels and the development of 19F MRI detectable gelatin-based hydrogels, paving the way toward their entry in clinical practice.
Název v anglickém jazyce
19F MRI In Vivo Monitoring of Gelatin-Based Hydrogels: 3D Scaffolds with Tunable Biodegradation toward Regenerative Medicine
Popis výsledku anglicky
Gelatin-based hydrogels emerged as promising biodegradable cell-compatible 3D-printable materials with tunable mechanical properties that serve tissue engineering and applications in regenerative medicine. Nevertheless, these materials are very challenging to monitor in vivo, which has hampered the further development of these materials and their translation into clinical practice. To overcome this limitation, we designed a cross-linked 3D-printable gelatin-based hydrogel endowed with poly[N-(2,2-difluoroethyl)acrylamide] (PDFEA). Such PDFEA-containing hydrogels can be monitored in vivo through fluorine-19 magnetic resonance imaging (19F MRI), which enables to monitor such implants in vivo and to assess their in vivo biodegradation kinetics. Herein, we prepared three different PDFEA-containing hydrogels with varying cross-linking degrees and studied their physicochemical properties (storage modulus, Young’s modulus, swelling ratio, in vitro degradation rate). Next, we administered these samples subcutaneously into mice and exploited 19F MRI to detect the biodegradation kinetics over 370 days. Hydrogels with a high cross-linking degree did not extensively degrade in vitro nor in vivo within the evaluated time frame. In contrast, hydrogels characterized by a low degree of cross-linking extensively degraded in vitro as well as in vivo (half-life of 228 ± 21 days). We demonstrated that endowing hydrogels with PDFEA enables monitoring of these hydrogels in vivo. Our results may become a benchmark in forthcoming studies of biodegradable hydrogels and the development of 19F MRI detectable gelatin-based hydrogels, paving the way toward their entry in clinical practice.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemistry of Materials
ISSN
0897-4756
e-ISSN
1520-5002
Svazek periodika
36
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
4417-4425
Kód UT WoS článku
001226362400001
EID výsledku v databázi Scopus
2-s2.0-85191156450