Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

19F MRI In Vivo Monitoring of Gelatin-Based Hydrogels: 3D Scaffolds with Tunable Biodegradation toward Regenerative Medicine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00585751" target="_blank" >RIV/61388963:_____/24:00585751 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61389013:_____/24:00585751 RIV/00216208:11110/24:10482618 RIV/00064165:_____/24:10482618

  • Výsledek na webu

    <a href="https://doi.org/10.1021/acs.chemmater.3c03321" target="_blank" >https://doi.org/10.1021/acs.chemmater.3c03321</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.chemmater.3c03321" target="_blank" >10.1021/acs.chemmater.3c03321</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    19F MRI In Vivo Monitoring of Gelatin-Based Hydrogels: 3D Scaffolds with Tunable Biodegradation toward Regenerative Medicine

  • Popis výsledku v původním jazyce

    Gelatin-based hydrogels emerged as promising biodegradable cell-compatible 3D-printable materials with tunable mechanical properties that serve tissue engineering and applications in regenerative medicine. Nevertheless, these materials are very challenging to monitor in vivo, which has hampered the further development of these materials and their translation into clinical practice. To overcome this limitation, we designed a cross-linked 3D-printable gelatin-based hydrogel endowed with poly[N-(2,2-difluoroethyl)acrylamide] (PDFEA). Such PDFEA-containing hydrogels can be monitored in vivo through fluorine-19 magnetic resonance imaging (19F MRI), which enables to monitor such implants in vivo and to assess their in vivo biodegradation kinetics. Herein, we prepared three different PDFEA-containing hydrogels with varying cross-linking degrees and studied their physicochemical properties (storage modulus, Young’s modulus, swelling ratio, in vitro degradation rate). Next, we administered these samples subcutaneously into mice and exploited 19F MRI to detect the biodegradation kinetics over 370 days. Hydrogels with a high cross-linking degree did not extensively degrade in vitro nor in vivo within the evaluated time frame. In contrast, hydrogels characterized by a low degree of cross-linking extensively degraded in vitro as well as in vivo (half-life of 228 ± 21 days). We demonstrated that endowing hydrogels with PDFEA enables monitoring of these hydrogels in vivo. Our results may become a benchmark in forthcoming studies of biodegradable hydrogels and the development of 19F MRI detectable gelatin-based hydrogels, paving the way toward their entry in clinical practice.

  • Název v anglickém jazyce

    19F MRI In Vivo Monitoring of Gelatin-Based Hydrogels: 3D Scaffolds with Tunable Biodegradation toward Regenerative Medicine

  • Popis výsledku anglicky

    Gelatin-based hydrogels emerged as promising biodegradable cell-compatible 3D-printable materials with tunable mechanical properties that serve tissue engineering and applications in regenerative medicine. Nevertheless, these materials are very challenging to monitor in vivo, which has hampered the further development of these materials and their translation into clinical practice. To overcome this limitation, we designed a cross-linked 3D-printable gelatin-based hydrogel endowed with poly[N-(2,2-difluoroethyl)acrylamide] (PDFEA). Such PDFEA-containing hydrogels can be monitored in vivo through fluorine-19 magnetic resonance imaging (19F MRI), which enables to monitor such implants in vivo and to assess their in vivo biodegradation kinetics. Herein, we prepared three different PDFEA-containing hydrogels with varying cross-linking degrees and studied their physicochemical properties (storage modulus, Young’s modulus, swelling ratio, in vitro degradation rate). Next, we administered these samples subcutaneously into mice and exploited 19F MRI to detect the biodegradation kinetics over 370 days. Hydrogels with a high cross-linking degree did not extensively degrade in vitro nor in vivo within the evaluated time frame. In contrast, hydrogels characterized by a low degree of cross-linking extensively degraded in vitro as well as in vivo (half-life of 228 ± 21 days). We demonstrated that endowing hydrogels with PDFEA enables monitoring of these hydrogels in vivo. Our results may become a benchmark in forthcoming studies of biodegradable hydrogels and the development of 19F MRI detectable gelatin-based hydrogels, paving the way toward their entry in clinical practice.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemistry of Materials

  • ISSN

    0897-4756

  • e-ISSN

    1520-5002

  • Svazek periodika

    36

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    4417-4425

  • Kód UT WoS článku

    001226362400001

  • EID výsledku v databázi Scopus

    2-s2.0-85191156450