Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388963%3A_____%2F24%3A00585553" target="_blank" >RIV/61388963:_____/24:00585553 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/jcc.27377" target="_blank" >https://doi.org/10.1002/jcc.27377</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jcc.27377" target="_blank" >10.1002/jcc.27377</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers
Popis výsledku v původním jazyce
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available “state-of-the-art” accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Název v anglickém jazyce
Harmonic and anharmonic vibrational computations for biomolecular building blocks: Benchmarking DFT and basis sets by theoretical and experimental IR spectrum of glycine conformers
Popis výsledku anglicky
Advanced vibrational spectroscopic experiments have reached a level of sophistication that can only be matched by numerical simulations in order to provide an unequivocal analysis, a crucial step to understand the structure-function relationship of biomolecules. While density functional theory (DFT) has become the standard method when targeting medium-size or larger systems, the problem of its reliability and accuracy are well-known and have been abundantly documented. To establish a reliable computational protocol, especially when accuracy is critical, a tailored benchmark is usually required. This is generally done over a short list of known candidates, with the basis set often fixed a priori. In this work, we present a systematic study of the performance of DFT-based hybrid and double-hybrid functionals in the prediction of vibrational energies and infrared intensities at the harmonic level and beyond, considering anharmonic effects through vibrational perturbation theory at the second order. The study is performed for the six-lowest energy glycine conformers, utilizing available “state-of-the-art” accurate theoretical and experimental data as reference. Focusing on the most intense fundamental vibrations in the mid-infrared range of glycine conformers, the role of the basis sets is also investigated considering the balance between computational cost and accuracy. Targeting larger systems, a broad range of hybrid schemes with different computational costs is also tested.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Chemistry
ISSN
0192-8651
e-ISSN
1096-987X
Svazek periodika
45
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
1846-1869
Kód UT WoS článku
001209424500001
EID výsledku v databázi Scopus
2-s2.0-85191813797