Mechanistic insights into the Orai channel by molecular dynamics simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F19%3A00519579" target="_blank" >RIV/61388971:_____/19:00519579 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1084952118300375?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1084952118300375?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.semcdb.2019.01.002" target="_blank" >10.1016/j.semcdb.2019.01.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanistic insights into the Orai channel by molecular dynamics simulations
Popis výsledku v původním jazyce
Highly Ca2+ selective channels trigger a large variety of cellular signaling processes in both excitable and non-excitable cells. Among these channels, the Orai channel is unique in its activation mechanism and its structure. It mediates Ca2+ influx into the cytosol with an extremely small unitary conductance over longer time-scales, ranging from minutes up to several hours. Its activation is regulated by the Ca2+ content of the endoplasmic reticulum (ER). Depletion of luminal [Ca2+](ER) is sensed by the STIM1 single transmembrane protein that directly binds and gates the Orail channel. Orai mediated Ca2+ influx increases cytosolic Ca2+ from 100 nM up to low micromolar range close to the pore and thereby forms Ca2+ microdomains. Hence, these features of the Orai channel can trigger long-term signaling processes without affecting the overall Ca2+ content of a single living cell. Here we focus on the architecture and dynamic conformational changes within the Orai channel. This review summarizes current achievements of molecular dynamics simulations in combination with live cell recordings to address gating and permeation of the Orai channel with molecular precision.
Název v anglickém jazyce
Mechanistic insights into the Orai channel by molecular dynamics simulations
Popis výsledku anglicky
Highly Ca2+ selective channels trigger a large variety of cellular signaling processes in both excitable and non-excitable cells. Among these channels, the Orai channel is unique in its activation mechanism and its structure. It mediates Ca2+ influx into the cytosol with an extremely small unitary conductance over longer time-scales, ranging from minutes up to several hours. Its activation is regulated by the Ca2+ content of the endoplasmic reticulum (ER). Depletion of luminal [Ca2+](ER) is sensed by the STIM1 single transmembrane protein that directly binds and gates the Orail channel. Orai mediated Ca2+ influx increases cytosolic Ca2+ from 100 nM up to low micromolar range close to the pore and thereby forms Ca2+ microdomains. Hence, these features of the Orai channel can trigger long-term signaling processes without affecting the overall Ca2+ content of a single living cell. Here we focus on the architecture and dynamic conformational changes within the Orai channel. This review summarizes current achievements of molecular dynamics simulations in combination with live cell recordings to address gating and permeation of the Orai channel with molecular precision.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Seminars in Cell & Developmental Biology
ISSN
1084-9521
e-ISSN
—
Svazek periodika
94
Číslo periodika v rámci svazku
October 2019 SI
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
50-58
Kód UT WoS článku
000485875300007
EID výsledku v databázi Scopus
2-s2.0-85059862388