Community dynamics and function of algae and bacteria during winter in central European great lakes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F20%3A00532694" target="_blank" >RIV/61388971:_____/20:00532694 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0380133019301182" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0380133019301182</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jglr.2019.07.002" target="_blank" >10.1016/j.jglr.2019.07.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Community dynamics and function of algae and bacteria during winter in central European great lakes
Popis výsledku v původním jazyce
Abundant phytoplankton and bacteria were identified by microscopy and high-throughput 16S rRNA tag Illumina sequencing of samples from water- and ice phases collected during winter at two central European Great Lakes, Balaton and Ferto (Neusiedlersee). Bacterial reads at all sites were dominated (>85%) by Bacteroidetes and Proteobacteria. Amongst phototrophs, microscopy and 16S sequencing revealed that both phytoplankton and cyanobacteria were represented, with a median of 1500 cyanobacterial sequence reads amongst 13 samples analyzed. The sequence analysis compared replicate Balaton and Ferto ice and water samples with an outgroup from three Hungarian soda lakes. In particular, both water and ice from Ferto contained high contributions from cyanobacteria. Two percent of total reads identified to the level of family in water at Nab were dominated by a single operational taxonomic unit (OTU) of a cyanobacterium within the Rivulariaceae, which was largely absent from ice. Conversely, ice samples from both lakes yielded an abundant OTU assigned to a Flavobacterium sp. known to be associated with freshwater ice. Principal Coordinates Analysis (PCoA) revealed that the ice communities from all sites were similar to one another, and that the water communities did not cluster together. Fluorescence emission spectra obtained at 77 K confirmed the presence of intact cyanobacteria in Fento water and ice. Photosynthetic characterization of phototrophs resident in water and ice analyzed by assay of acid-stable photosynthetic (HCO3-)-C-14 incorporation showed that communities from both phases were photosynthetically active, thus adding to growing recognition of ice-covered lakes as viable habitat for phototrophs. (C) 2019 International Association for Great lakes Research. Published by Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Community dynamics and function of algae and bacteria during winter in central European great lakes
Popis výsledku anglicky
Abundant phytoplankton and bacteria were identified by microscopy and high-throughput 16S rRNA tag Illumina sequencing of samples from water- and ice phases collected during winter at two central European Great Lakes, Balaton and Ferto (Neusiedlersee). Bacterial reads at all sites were dominated (>85%) by Bacteroidetes and Proteobacteria. Amongst phototrophs, microscopy and 16S sequencing revealed that both phytoplankton and cyanobacteria were represented, with a median of 1500 cyanobacterial sequence reads amongst 13 samples analyzed. The sequence analysis compared replicate Balaton and Ferto ice and water samples with an outgroup from three Hungarian soda lakes. In particular, both water and ice from Ferto contained high contributions from cyanobacteria. Two percent of total reads identified to the level of family in water at Nab were dominated by a single operational taxonomic unit (OTU) of a cyanobacterium within the Rivulariaceae, which was largely absent from ice. Conversely, ice samples from both lakes yielded an abundant OTU assigned to a Flavobacterium sp. known to be associated with freshwater ice. Principal Coordinates Analysis (PCoA) revealed that the ice communities from all sites were similar to one another, and that the water communities did not cluster together. Fluorescence emission spectra obtained at 77 K confirmed the presence of intact cyanobacteria in Fento water and ice. Photosynthetic characterization of phototrophs resident in water and ice analyzed by assay of acid-stable photosynthetic (HCO3-)-C-14 incorporation showed that communities from both phases were photosynthetically active, thus adding to growing recognition of ice-covered lakes as viable habitat for phototrophs. (C) 2019 International Association for Great lakes Research. Published by Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10617 - Marine biology, freshwater biology, limnology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Great Lakes Research
ISSN
0380-1330
e-ISSN
—
Svazek periodika
46
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
732-740
Kód UT WoS článku
000556753300005
EID výsledku v databázi Scopus
2-s2.0-85069555303