Probabilistic outlier identification for RNA sequencing generalized linear models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F21%3A00547151" target="_blank" >RIV/61388971:_____/21:00547151 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/nargab/article/3/1/lqab005/6155871" target="_blank" >https://academic.oup.com/nargab/article/3/1/lqab005/6155871</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/nargab/lqab005" target="_blank" >10.1093/nargab/lqab005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Probabilistic outlier identification for RNA sequencing generalized linear models
Popis výsledku v původním jazyce
Relative transcript abundance has proven to be a valuable tool for understanding the function of genes in biological systems. For the differential analysis of transcript abundance using RNA sequencing data, the negative binomial model is by far the most frequently adopted. However, common methods that are based on a negative binomial model are not robust to extreme outliers, which we found to be abundant in public datasets. So far, no rigorous and probabilistic methods for detection of outliers have been developed for RNA sequencing data, leaving the identification mostly to visual inspection. Recent advances in Bayesian computation allow large-scale comparison of observed data against its theoretical distribution given in a statistical model. Here we propose ppcseq, a key quality-control tool for identifying transcripts that include outlier data points in differential expression analysis, which do not follow a negative binomial distribution. Applying ppcseq to analyse several publicly available datasets using popular tools, we show that from 3 to 10 percent of differentially abundant transcripts across algorithms and datasets had statistics inflated by the presence of outliers.
Název v anglickém jazyce
Probabilistic outlier identification for RNA sequencing generalized linear models
Popis výsledku anglicky
Relative transcript abundance has proven to be a valuable tool for understanding the function of genes in biological systems. For the differential analysis of transcript abundance using RNA sequencing data, the negative binomial model is by far the most frequently adopted. However, common methods that are based on a negative binomial model are not robust to extreme outliers, which we found to be abundant in public datasets. So far, no rigorous and probabilistic methods for detection of outliers have been developed for RNA sequencing data, leaving the identification mostly to visual inspection. Recent advances in Bayesian computation allow large-scale comparison of observed data against its theoretical distribution given in a statistical model. Here we propose ppcseq, a key quality-control tool for identifying transcripts that include outlier data points in differential expression analysis, which do not follow a negative binomial distribution. Applying ppcseq to analyse several publicly available datasets using popular tools, we show that from 3 to 10 percent of differentially abundant transcripts across algorithms and datasets had statistics inflated by the presence of outliers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018131" target="_blank" >LM2018131: Česká národní infrastruktura pro biologická data</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NAR Genomics and Bioinformatics
ISSN
2631-9268
e-ISSN
2631-9268
Svazek periodika
3
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
lqab005
Kód UT WoS článku
000698594000014
EID výsledku v databázi Scopus
2-s2.0-85110061288