Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F22%3A00553504" target="_blank" >RIV/61388971:_____/22:00553504 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0016706121006169?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0016706121006169?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geoderma.2021.115536" target="_blank" >10.1016/j.geoderma.2021.115536</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem
Popis výsledku v původním jazyce
Changing climatic conditions (warming and decreasing precipitation) have been found to be a threat to the agricultural sustainability of Mediterranean croplands. From the climate change perspective, biochar amendment may interact with the effects of warming and drought stresses on soil ecosystems. However, the responses of soil microbial communities to the joint effects of climate change and biochar in Mediterranean croplands are not sufficiently known. To help fill this knowledge gap, in this work we used a field experiment to determine the effects of partial rain exclusion alone or combined with a soil temperature increase in biochar-amended (20 t ha-1) and unamended plots under crop rotation on soil chemical properties, enzyme activities, and the microbial community activity, structure, composition, abundance, and functions. The biomass, composition, and activity of the soil bacterial and fungal communities were more responsive to biochar addition than to climate manipulation. Thus, soil chemical parameters, enzyme activities and the relative abundances of bacterial populations were not responsive to the interaction of biochar and climate manipulation, while the predicted functionality of the bacterial community was modified by both factors. Soil beta-glucosidase activity significantly decreased in response to biochar addition and climate manipulation, while urease activity was significantly increased by biochar, and protease activity was significantly decreased by climate manipulation. Gram negative and fungal biomasses were significantly affected by the interaction of biochar with climate manipulation. Climate manipulation produced changes in the composition of the soil fungal community without loss of diversity. This study illustrates how the interactions between biochar amendment and future climate change scenarios influence microbially-driven ecosystem services related to the maintenance of nutrient cycles and biodiversity in a Mediterranean agroecosystem.
Název v anglickém jazyce
Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem
Popis výsledku anglicky
Changing climatic conditions (warming and decreasing precipitation) have been found to be a threat to the agricultural sustainability of Mediterranean croplands. From the climate change perspective, biochar amendment may interact with the effects of warming and drought stresses on soil ecosystems. However, the responses of soil microbial communities to the joint effects of climate change and biochar in Mediterranean croplands are not sufficiently known. To help fill this knowledge gap, in this work we used a field experiment to determine the effects of partial rain exclusion alone or combined with a soil temperature increase in biochar-amended (20 t ha-1) and unamended plots under crop rotation on soil chemical properties, enzyme activities, and the microbial community activity, structure, composition, abundance, and functions. The biomass, composition, and activity of the soil bacterial and fungal communities were more responsive to biochar addition than to climate manipulation. Thus, soil chemical parameters, enzyme activities and the relative abundances of bacterial populations were not responsive to the interaction of biochar and climate manipulation, while the predicted functionality of the bacterial community was modified by both factors. Soil beta-glucosidase activity significantly decreased in response to biochar addition and climate manipulation, while urease activity was significantly increased by biochar, and protease activity was significantly decreased by climate manipulation. Gram negative and fungal biomasses were significantly affected by the interaction of biochar with climate manipulation. Climate manipulation produced changes in the composition of the soil fungal community without loss of diversity. This study illustrates how the interactions between biochar amendment and future climate change scenarios influence microbially-driven ecosystem services related to the maintenance of nutrient cycles and biodiversity in a Mediterranean agroecosystem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geoderma
ISSN
0016-7061
e-ISSN
1872-6259
Svazek periodika
407
Číslo periodika v rámci svazku
FEB 1 2022
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
115536
Kód UT WoS článku
000725510200004
EID výsledku v databázi Scopus
2-s2.0-85118584365