Improved recovery and annotation of genes in metagenomes through the prediction of fungal introns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388971%3A_____%2F23%3A00577005" target="_blank" >RIV/61388971:_____/23:00577005 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/23:00367788 RIV/00216208:11310/23:10469817
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13852" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13852</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/1755-0998.13852" target="_blank" >10.1111/1755-0998.13852</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improved recovery and annotation of genes in metagenomes through the prediction of fungal introns
Popis výsledku v původním jazyce
Metagenomics provides a tool to assess the functional potential of environmental and host-associated microbiomes based on the analysis of environmental DNA: assembly, gene prediction and annotation. While gene prediction is straightforward for most bacterial and archaeal taxa, it has limited applicability in the majority of eukaryotic organisms, including fungi that contain introns in gene coding sequences. As a consequence, eukaryotic genes are underrepresented in metagenomics datasets and our understanding of the contribution of fungi and other eukaryotes to microbiome functioning is limited. Here, we developed a machine intelligence-based algorithm that predicts fungal introns in environmental DNA with reasonable precision and used it to improve the annotation of environmental metagenomes. Intron removal increased the number of predicted genes by up to 9.1% and improved the annotation of several others. The proportion of newly predicted genes increased with the share of eukaryotic genes in the metagenome and-within fungal taxa-increased with the number of introns per gene. Our approach provides a tool named SVMmycointron for improved metagenome annotation, especially of microbiomes with a high proportion of eukaryotes. The scripts described in the paper are made publicly available and can be readily utilized by microbiome researchers analysing metagenomics data.
Název v anglickém jazyce
Improved recovery and annotation of genes in metagenomes through the prediction of fungal introns
Popis výsledku anglicky
Metagenomics provides a tool to assess the functional potential of environmental and host-associated microbiomes based on the analysis of environmental DNA: assembly, gene prediction and annotation. While gene prediction is straightforward for most bacterial and archaeal taxa, it has limited applicability in the majority of eukaryotic organisms, including fungi that contain introns in gene coding sequences. As a consequence, eukaryotic genes are underrepresented in metagenomics datasets and our understanding of the contribution of fungi and other eukaryotes to microbiome functioning is limited. Here, we developed a machine intelligence-based algorithm that predicts fungal introns in environmental DNA with reasonable precision and used it to improve the annotation of environmental metagenomes. Intron removal increased the number of predicted genes by up to 9.1% and improved the annotation of several others. The proportion of newly predicted genes increased with the share of eukaryotic genes in the metagenome and-within fungal taxa-increased with the number of introns per gene. Our approach provides a tool named SVMmycointron for improved metagenome annotation, especially of microbiomes with a high proportion of eukaryotes. The scripts described in the paper are made publicly available and can be readily utilized by microbiome researchers analysing metagenomics data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10606 - Microbiology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Molecular Ecology Resources
ISSN
1755-098X
e-ISSN
1755-0998
Svazek periodika
23
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1800-1811
Kód UT WoS článku
001045828600001
EID výsledku v databázi Scopus
2-s2.0-85167618234