Effect of Ar+ irradiation of Ti3InC2 at different ion beam fluences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F20%3A00524737" target="_blank" >RIV/61388980:_____/20:00524737 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61389005:_____/20:00524737 RIV/68407700:21110/20:00348379 RIV/60461373:22310/20:43921573
Výsledek na webu
<a href="https://doi.org/10.1016/j.surfcoat.2020.125834" target="_blank" >https://doi.org/10.1016/j.surfcoat.2020.125834</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.surfcoat.2020.125834" target="_blank" >10.1016/j.surfcoat.2020.125834</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effect of Ar+ irradiation of Ti3InC2 at different ion beam fluences
Popis výsledku v původním jazyce
MAX phases are a group of ternary carbides or nitrides with a nanolayered microstructure. The general formula of MAX phases is Mn+1AXn with n = 1 to 3, where M is the transition metal, A is the A-group element (from IIIA to VIA), and X is either carbon or nitrogen. These carbides and nitride have an unusual behavior that combines the characteristics of metals and ceramics in terms chemical, physical, electrical and mechanical properties. These properties can be explained by the anisotropic lamellar microstructures of the MAX phases. Here, we report a study on thin Ti3InC2 (M3AX2) films, synthetized by repeated ion beam sputtering of single (Ti, In and C) elements at the Low Energy Ion Facility (LEIF). Ion beam sputtering was performed using an Ar+ ion beam with energy of 25 keV and a current of 400 μA. The thickness of the Ti3InC2 films (measured by RBS) was determined to be approximately 65 nm. After deposition, the samples were annealed in vacuum at 120 °C for 24 h to induce interphase chemical interactions and form the Ti3InC2 composite. To evaluate the radiation hardness and effects induced by ion radiation, the as-deposited Ti3InC2 film was irradiated by the 100 keV Ar+ ion beam with two different fluences, 1∙1013 cm−2 and 1∙1015 cm−2. It was determined that the low-level fluence of Ar+ ions (1∙1013 cm−2) did not induce any considerable change in surface roughness and that the polycrystalline structure was preserved. However, at higher fluences, the formation of concentrated point defects within the lattice of nanocrystalline Ti3InC2 and a low level of amorphization were registered. The mechanical properties determined by nanoindentation indicate the potential for using irradiated Ti3InC2 thin films under harsh environmental conditions.
Název v anglickém jazyce
Effect of Ar+ irradiation of Ti3InC2 at different ion beam fluences
Popis výsledku anglicky
MAX phases are a group of ternary carbides or nitrides with a nanolayered microstructure. The general formula of MAX phases is Mn+1AXn with n = 1 to 3, where M is the transition metal, A is the A-group element (from IIIA to VIA), and X is either carbon or nitrogen. These carbides and nitride have an unusual behavior that combines the characteristics of metals and ceramics in terms chemical, physical, electrical and mechanical properties. These properties can be explained by the anisotropic lamellar microstructures of the MAX phases. Here, we report a study on thin Ti3InC2 (M3AX2) films, synthetized by repeated ion beam sputtering of single (Ti, In and C) elements at the Low Energy Ion Facility (LEIF). Ion beam sputtering was performed using an Ar+ ion beam with energy of 25 keV and a current of 400 μA. The thickness of the Ti3InC2 films (measured by RBS) was determined to be approximately 65 nm. After deposition, the samples were annealed in vacuum at 120 °C for 24 h to induce interphase chemical interactions and form the Ti3InC2 composite. To evaluate the radiation hardness and effects induced by ion radiation, the as-deposited Ti3InC2 film was irradiated by the 100 keV Ar+ ion beam with two different fluences, 1∙1013 cm−2 and 1∙1015 cm−2. It was determined that the low-level fluence of Ar+ ions (1∙1013 cm−2) did not induce any considerable change in surface roughness and that the polycrystalline structure was preserved. However, at higher fluences, the formation of concentrated point defects within the lattice of nanocrystalline Ti3InC2 and a low level of amorphization were registered. The mechanical properties determined by nanoindentation indicate the potential for using irradiated Ti3InC2 thin films under harsh environmental conditions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10402 - Inorganic and nuclear chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surface and Coatings Technology
ISSN
0257-8972
e-ISSN
—
Svazek periodika
394
Číslo periodika v rámci svazku
JUL
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
8
Strana od-do
125834
Kód UT WoS článku
000542100500024
EID výsledku v databázi Scopus
2-s2.0-85085214472