Compositional Scalar-on-Function Regression with Application to Sediment Particle Size Distributions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388980%3A_____%2F21%3A00542305" target="_blank" >RIV/61388980:_____/21:00542305 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/21:73610049
Výsledek na webu
<a href="http://hdl.handle.net/11104/0322722" target="_blank" >http://hdl.handle.net/11104/0322722</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11004-021-09941-1" target="_blank" >10.1007/s11004-021-09941-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compositional Scalar-on-Function Regression with Application to Sediment Particle Size Distributions
Popis výsledku v původním jazyce
The chemical composition of sediments is controlled predominantly by the sediment grain size, and thus evaluating their relationship is an important task in sedimentary geochemistry. The grain size is characterized by the respective particle size distribution, which can be expressed as a probability density function. Because of the relative character of densities, the Bayes space methodology was employed to build a regression model between a real response and a density function as a covariate, here the chemical composition and the particle size density. For practical computations, density functions were expressed in the standard L-2 space using the centred logratio transformation and spline approximation of the input discretized densities was utilized by respecting the induced zero-integral constraint. After a concise simulation study, supporting the relevance of the proposed regression model, the new methodology was applied to examine the relationship between sediment grain size and geochemical composition, with samples being obtained in the Czech Republic in the Skalka Reservoir and in the Oh.re River floodplain upstream of the reservoir, to reveal proper grain size proxies. The Al/Si and Zr/Rb logratios in the sediments that were studied showed grain-size control, which makes them suitable for this purpose.
Název v anglickém jazyce
Compositional Scalar-on-Function Regression with Application to Sediment Particle Size Distributions
Popis výsledku anglicky
The chemical composition of sediments is controlled predominantly by the sediment grain size, and thus evaluating their relationship is an important task in sedimentary geochemistry. The grain size is characterized by the respective particle size distribution, which can be expressed as a probability density function. Because of the relative character of densities, the Bayes space methodology was employed to build a regression model between a real response and a density function as a covariate, here the chemical composition and the particle size density. For practical computations, density functions were expressed in the standard L-2 space using the centred logratio transformation and spline approximation of the input discretized densities was utilized by respecting the induced zero-integral constraint. After a concise simulation study, supporting the relevance of the proposed regression model, the new methodology was applied to examine the relationship between sediment grain size and geochemical composition, with samples being obtained in the Czech Republic in the Skalka Reservoir and in the Oh.re River floodplain upstream of the reservoir, to reveal proper grain size proxies. The Al/Si and Zr/Rb logratios in the sediments that were studied showed grain-size control, which makes them suitable for this purpose.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-01768S" target="_blank" >GA19-01768S: Separace geochemických signálů v sedimentech: aplikace pokročilých statistických metod na rozsáhlé geochemické datové soubory</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Geosciences
ISSN
1874-8961
e-ISSN
1874-8953
Svazek periodika
53
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
29
Strana od-do
1667-1695
Kód UT WoS článku
000642867300001
EID výsledku v databázi Scopus
2-s2.0-85105144756