Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AE source location by neural networks with arrival time profiles

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F09%3A00334346" target="_blank" >RIV/61388998:_____/09:00334346 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AE source location by neural networks with arrival time profiles

  • Popis výsledku v původním jazyce

    Correct localization of acoustic emission (AE) sources is a basic requirement in AE analysis and consequent evaluation of damage mechanism. The localization procedures using artificial neural networks (ANN) represent today highly effective, alternative approach to classical triangulation algorithms. Nevertheless, their application possibilities are limited due to problematic collecting of sufficiently extensive training and testing data sets together with the non-portability of particular trained network to any other object. A new ANN-based approach, using so-called signal arrival time profiles, is proposed to overcome both limitations. Such approach provides the ANN training on numerical models and allows the application of learned ANN on real structures of various scales and materials. This enables considerable extension of ANN application possibilities. New method is illustrated on experimental data obtained during pen-tests on a steel plate, and its remarkable advantages are discus

  • Název v anglickém jazyce

    AE source location by neural networks with arrival time profiles

  • Popis výsledku anglicky

    Correct localization of acoustic emission (AE) sources is a basic requirement in AE analysis and consequent evaluation of damage mechanism. The localization procedures using artificial neural networks (ANN) represent today highly effective, alternative approach to classical triangulation algorithms. Nevertheless, their application possibilities are limited due to problematic collecting of sufficiently extensive training and testing data sets together with the non-portability of particular trained network to any other object. A new ANN-based approach, using so-called signal arrival time profiles, is proposed to overcome both limitations. Such approach provides the ANN training on numerical models and allows the application of learned ANN on real structures of various scales and materials. This enables considerable extension of ANN application possibilities. New method is illustrated on experimental data obtained during pen-tests on a steel plate, and its remarkable advantages are discus

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BI - Akustika a kmity

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    NDT in PROGRESS

  • ISBN

    978-80-214-3968-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    University of Technology Brno

  • Místo vydání

    Brno

  • Místo konání akce

    Praha

  • Datum konání akce

    12. 10. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku