Application of Methods for Unconstrained Optimization in Computation of Normal Contact Vector
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F10%3A00343347" target="_blank" >RIV/61388998:_____/10:00343347 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Methods for Unconstrained Optimization in Computation of Normal Contact Vector
Popis výsledku v původním jazyce
The stability of the contact algorithm using the penalty method is significantly affected by choosing of the penalty function. The penalty function is defined like a magnitude of the penetration vector multiplied by the users-defined constant - the penalty parameter. The penetration vector is obtained by solution of the minimum distance problem between the node/Gaussian integration point and the segment of the element. For a general quadrilateral contact segment this task leads to the system of two nonlinear equations. It is shown that the popular Newton-Raphson method is inadvisable for this problem. In this paper, alternative methods like quasi-Newton methods, gradient methods and the simplex method are presented. Especial attention is put on the line-search method that is crucial for a general success of quasi-Newton methods as well as gradient methods. All mentioned methods are tested by means of numerical example, which involves bending of two rectangular plates over a cylinder.
Název v anglickém jazyce
Application of Methods for Unconstrained Optimization in Computation of Normal Contact Vector
Popis výsledku anglicky
The stability of the contact algorithm using the penalty method is significantly affected by choosing of the penalty function. The penalty function is defined like a magnitude of the penetration vector multiplied by the users-defined constant - the penalty parameter. The penetration vector is obtained by solution of the minimum distance problem between the node/Gaussian integration point and the segment of the element. For a general quadrilateral contact segment this task leads to the system of two nonlinear equations. It is shown that the popular Newton-Raphson method is inadvisable for this problem. In this paper, alternative methods like quasi-Newton methods, gradient methods and the simplex method are presented. Especial attention is put on the line-search method that is crucial for a general success of quasi-Newton methods as well as gradient methods. All mentioned methods are tested by means of numerical example, which involves bending of two rectangular plates over a cylinder.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering Mechanics 2010
ISBN
978-80-87012-26-0
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
—
Název nakladatele
Institute of Thermomechanics AS CR, v. v. i.
Místo vydání
Prague
Místo konání akce
Svratka
Datum konání akce
10. 5. 2010
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—