Implicit and explicit secular equations for Rayleigh waves in two-dimensional anisotropic media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F13%3A00396734" target="_blank" >RIV/61388998:_____/13:00396734 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.wavemoti.2013.04.011" target="_blank" >http://dx.doi.org/10.1016/j.wavemoti.2013.04.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.wavemoti.2013.04.011" target="_blank" >10.1016/j.wavemoti.2013.04.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implicit and explicit secular equations for Rayleigh waves in two-dimensional anisotropic media
Popis výsledku v původním jazyce
This paper is concerned with the derivation of implicit and explicit secular equations for Rayleigh waves polarized in a plane of symmetry of an anisotropic linear elastic medium. It has been confirmed, in accord with Ting?s paper [2], that the Rayleighwaves propagate with no geometric dispersion. Numerical evaluations of both the implicit and explicit equations give the same values of Rayleigh wave velocities. In the case of orthotropic material (thin composites) it has been found that Rayleigh wave velocity depends significantly (as with bulk waves) on the directions of principal material axes. For the same material model the analytical solutions, based on implicit and explicit secular equations, were compared against the finite element and experimental data that had been published by Cerv et al. [4] in 2010. It emerged that the theory was in accordance with the experiment.
Název v anglickém jazyce
Implicit and explicit secular equations for Rayleigh waves in two-dimensional anisotropic media
Popis výsledku anglicky
This paper is concerned with the derivation of implicit and explicit secular equations for Rayleigh waves polarized in a plane of symmetry of an anisotropic linear elastic medium. It has been confirmed, in accord with Ting?s paper [2], that the Rayleighwaves propagate with no geometric dispersion. Numerical evaluations of both the implicit and explicit equations give the same values of Rayleigh wave velocities. In the case of orthotropic material (thin composites) it has been found that Rayleigh wave velocity depends significantly (as with bulk waves) on the directions of principal material axes. For the same material model the analytical solutions, based on implicit and explicit secular equations, were compared against the finite element and experimental data that had been published by Cerv et al. [4] in 2010. It emerged that the theory was in accordance with the experiment.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP101%2F11%2F0288" target="_blank" >GAP101/11/0288: Návrh inteligentních kompozitních struktur</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Wave Motion
ISSN
0165-2125
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1105-1117
Kód UT WoS článku
000325835900005
EID výsledku v databázi Scopus
—