Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F15%3A00456081" target="_blank" >RIV/61388998:_____/15:00456081 - isvavai.cz</a>
Výsledek na webu
<a href="http://ac.els-cdn.com/S0362546X14003101/1-s2.0-S0362546X14003101-main.pdf?_tid=c4e832ba-d4c2-11e5-8448-00000aacb35f&acdnat=1455637049_0a70d2c2e8ce52a598373a559623d776" target="_blank" >http://ac.els-cdn.com/S0362546X14003101/1-s2.0-S0362546X14003101-main.pdf?_tid=c4e832ba-d4c2-11e5-8448-00000aacb35f&acdnat=1455637049_0a70d2c2e8ce52a598373a559623d776</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2014.09.020" target="_blank" >10.1016/j.na.2014.09.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems
Popis výsledku v původním jazyce
The system of two inclusions delta(u)epsilon(t, u(t), z(t)) there exists 0 and delta R((z) over dot)+ delta(z)epsilon(t, u(t), z(t)) there exists 0 with the dissipation potential R degree-1 homogeneous and with the stored energy epsilon(t, ., .) separately convex is considered. The relation between conventional weak solutions and local solutions is shown, and a suitably integrated maximal-dissipation principle is devised to select force-driven local solutions and eliminate solutions with "too-early jumps'' as it may occur in energy-driven ones. This is illustrated on scalar examples. An approximation by a simple and efficient semi-implicit time discretization of the fractional-step type is shown to converge to local solutions. On the scalar examples, the approximate solutions are shown to satisfy the integrated maximal-dissipation principle asymptotically, while in general it is devised only to serve as an a-posteriori tool to justify (or possibly adaptively adjust) thus obtained appro
Název v anglickém jazyce
Maximally-dissipative local solutions to rate-independent systems and application to damage and delamination problems
Popis výsledku anglicky
The system of two inclusions delta(u)epsilon(t, u(t), z(t)) there exists 0 and delta R((z) over dot)+ delta(z)epsilon(t, u(t), z(t)) there exists 0 with the dissipation potential R degree-1 homogeneous and with the stored energy epsilon(t, ., .) separately convex is considered. The relation between conventional weak solutions and local solutions is shown, and a suitably integrated maximal-dissipation principle is devised to select force-driven local solutions and eliminate solutions with "too-early jumps'' as it may occur in energy-driven ones. This is illustrated on scalar examples. An approximation by a simple and efficient semi-implicit time discretization of the fractional-step type is shown to converge to local solutions. On the scalar examples, the approximate solutions are shown to satisfy the integrated maximal-dissipation principle asymptotically, while in general it is devised only to serve as an a-posteriori tool to justify (or possibly adaptively adjust) thus obtained appro
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP201%2F10%2F0357" target="_blank" >GAP201/10/0357: Moderní matematické a počítačové modely pro ne-elastické procesy v pevných látkách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Svazek periodika
113
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
33-50
Kód UT WoS článku
000345687300002
EID výsledku v databázi Scopus
2-s2.0-84908428491