Assessment of methods for computing the closest point projection, penetration, and gap functions in contact searching problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F16%3A00451288" target="_blank" >RIV/61388998:_____/16:00451288 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/nme.4994" target="_blank" >http://dx.doi.org/10.1002/nme.4994</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.4994" target="_blank" >10.1002/nme.4994</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessment of methods for computing the closest point projection, penetration, and gap functions in contact searching problems
Popis výsledku v původním jazyce
In computational contact mechanics problems, local searching requires calculation of the closest point projection of a contactor point onto a given target segment. It is generally supposed that the contact boundary is locally described by a convex region. However, because this assumption is not valid for a general curved segment of a three-dimensional quadratic serendipity element, an iterative numerical procedure may not converge to the nearest local minimum. To this end, several unconstrained optimization methods are tested: the Newton–Raphson method, the least square projection, the sphere and torus approximation method, the steepest descent method, the Broyden method, the Broyden–Fletcher–Goldfarb–Shanno method, and the simplex method. The effectiveness and robustness of these methods are tested by means of a proposed benchmark problem. It is concluded that the Newton–Raphson method in conjunction with the simplex method significantly increases the robustness of the local contact search procedure of pure penalty contact methods, whereas the torus approximation method can be recommended for contact searching algorithms, which employ the Lagrange method or the augmented Lagrangian method.
Název v anglickém jazyce
Assessment of methods for computing the closest point projection, penetration, and gap functions in contact searching problems
Popis výsledku anglicky
In computational contact mechanics problems, local searching requires calculation of the closest point projection of a contactor point onto a given target segment. It is generally supposed that the contact boundary is locally described by a convex region. However, because this assumption is not valid for a general curved segment of a three-dimensional quadratic serendipity element, an iterative numerical procedure may not converge to the nearest local minimum. To this end, several unconstrained optimization methods are tested: the Newton–Raphson method, the least square projection, the sphere and torus approximation method, the steepest descent method, the Broyden method, the Broyden–Fletcher–Goldfarb–Shanno method, and the simplex method. The effectiveness and robustness of these methods are tested by means of a proposed benchmark problem. It is concluded that the Newton–Raphson method in conjunction with the simplex method significantly increases the robustness of the local contact search procedure of pure penalty contact methods, whereas the torus approximation method can be recommended for contact searching algorithms, which employ the Lagrange method or the augmented Lagrangian method.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
—
Svazek periodika
105
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
34
Strana od-do
803-833
Kód UT WoS článku
000370063500001
EID výsledku v databázi Scopus
2-s2.0-84945296632