Semiparametric statistical analysis of the Blade Tip Timing data for detection of turbine rotor speed instabilities.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F17%3A00482024" target="_blank" >RIV/61388998:_____/17:00482024 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/17:00482024
Výsledek na webu
<a href="http://www.enbis.org/activities/events/current/534_ENBIS_17_in_Naples//abstracts" target="_blank" >http://www.enbis.org/activities/events/current/534_ENBIS_17_in_Naples//abstracts</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semiparametric statistical analysis of the Blade Tip Timing data for detection of turbine rotor speed instabilities.
Popis výsledku v původním jazyce
ENBIS-17 in Naples (Italy), 9.-14. 9. 2017, European Network for Business and Industrial Statistics. We will present a semiparametric statistical model for detecting instabilities in a turbine rotor speed. The modeling and detection uses data obtained from the now standard BTT (Blade Tip Timing) contactless measurement method. The model is based on time-varying coefficient model formulated as a GAM (Generalized Additive Model) with appropriately selected penalty. Our approach can be perceived as a fully formalized time-varying statistical extension of the traditional Fourier analysis. As such, it can reveal important rotor instabilities not readily apparent in the traditional approaches. After presenting the underlying statistical modeling framework, we will illustrate the performance of our methodology on experimental data measured on a test turbine via magneto-resistive BTT technology. The research is supported from the AV21 Strategy of the Academy of Sciences of the Czech Republic.
Název v anglickém jazyce
Semiparametric statistical analysis of the Blade Tip Timing data for detection of turbine rotor speed instabilities.
Popis výsledku anglicky
ENBIS-17 in Naples (Italy), 9.-14. 9. 2017, European Network for Business and Industrial Statistics. We will present a semiparametric statistical model for detecting instabilities in a turbine rotor speed. The modeling and detection uses data obtained from the now standard BTT (Blade Tip Timing) contactless measurement method. The model is based on time-varying coefficient model formulated as a GAM (Generalized Additive Model) with appropriately selected penalty. Our approach can be perceived as a fully formalized time-varying statistical extension of the traditional Fourier analysis. As such, it can reveal important rotor instabilities not readily apparent in the traditional approaches. After presenting the underlying statistical modeling framework, we will illustrate the performance of our methodology on experimental data measured on a test turbine via magneto-resistive BTT technology. The research is supported from the AV21 Strategy of the Academy of Sciences of the Czech Republic.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů