On suitable inlet boundary conditions for fluid-structure interaction problems in a channel
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00504010" target="_blank" >RIV/61388998:_____/19:00504010 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/19:00335512
Výsledek na webu
<a href="https://articles.math.cas.cz/10.21136/AM.2019.0267-18" target="_blank" >https://articles.math.cas.cz/10.21136/AM.2019.0267-18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2019.0267-18" target="_blank" >10.21136/AM.2019.0267-18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On suitable inlet boundary conditions for fluid-structure interaction problems in a channel
Popis výsledku v původním jazyce
We are interested in the numerical solution of a two-dimensional fluid-structure interaction problem. A special attention is paid to the choice of physically relevant inlet boundary conditions for the case of channel closing. Three types of the inlet boundary conditions are considered. Beside the classical Dirichlet and the do-nothing boundary conditions also a generalized boundary condition motivated by the penalization prescription of the Dirichlet boundary condition is applied. The fluid flow is described by the incompressible Navier-Stokes equations in the arbitrary Lagrangian-Eulerian (ALE) form and the elastic body creating a part of the channel wall is modelled with the aid of linear elasticity. Both models are coupled with the boundary conditions prescribed at the common interface.nThe elastic and the fluid flow problems are approximated by the finite element method. The detailed derivation of the weak formulation including the boundary conditions is presented. The pseudo-elastic approach for construction of the ALE mapping is used. Results of numerical simulations for three considered inlet boundary conditions are compared. The flutter velocity is determined for a specific model problem and it is shown that the boundary condition with the penalization approach is suitable for the case of the fluid flow in a channel with vibrating walls.
Název v anglickém jazyce
On suitable inlet boundary conditions for fluid-structure interaction problems in a channel
Popis výsledku anglicky
We are interested in the numerical solution of a two-dimensional fluid-structure interaction problem. A special attention is paid to the choice of physically relevant inlet boundary conditions for the case of channel closing. Three types of the inlet boundary conditions are considered. Beside the classical Dirichlet and the do-nothing boundary conditions also a generalized boundary condition motivated by the penalization prescription of the Dirichlet boundary condition is applied. The fluid flow is described by the incompressible Navier-Stokes equations in the arbitrary Lagrangian-Eulerian (ALE) form and the elastic body creating a part of the channel wall is modelled with the aid of linear elasticity. Both models are coupled with the boundary conditions prescribed at the common interface.nThe elastic and the fluid flow problems are approximated by the finite element method. The detailed derivation of the weak formulation including the boundary conditions is presented. The pseudo-elastic approach for construction of the ALE mapping is used. Results of numerical simulations for three considered inlet boundary conditions are compared. The flutter velocity is determined for a specific model problem and it is shown that the boundary condition with the penalization approach is suitable for the case of the fluid flow in a channel with vibrating walls.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
64
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
27
Strana od-do
225-251
Kód UT WoS článku
000463984700006
EID výsledku v databázi Scopus
2-s2.0-85064191196