Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dislocation emission and crack growth in 3D bcc iron crystals under biaxial loading by atomistic simulations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00508315" target="_blank" >RIV/61388998:_____/19:00508315 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aip.scitation.org/doi/pdf/10.1063/1.5109949?class=pdf" target="_blank" >https://aip.scitation.org/doi/pdf/10.1063/1.5109949?class=pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.5109949" target="_blank" >10.1063/1.5109949</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dislocation emission and crack growth in 3D bcc iron crystals under biaxial loading by atomistic simulations

  • Popis výsledku v původním jazyce

    This paper is devoted to the study of the ductile-brittle behavior of a central nanocrack (1¯10)[110] (crack plane/crack front) under biaxial loading via free 3D molecular dynamics (MD) simulations, as well as the comparison of MD results with continuum predictions concerning T-stress. The so called T-stress is a constant stress component acting along the crack plane, which should be considered (together with the stress intensity factor K) in the assessment of brittle-ductile behavior, namely, in the case of the short cracks. Previous 2D atomistic simulations under plane strain conditions indicated that the level of T-stress (controlled by the biaxiality ratio σB/σA from the external loading) affects dislocation emission from the crack and can cause the ductile-brittle transition. The plane strain simulations using the periodic or translational boundary conditions in the bcc lattice have certain limitations: they enable the in-plane dislocation emission (Burgers vector lies in the observation plane), but they do not allow the complete dislocation emission on the all slip systems favored by the shear stress. As presented, our new free 3D atomistic simulations (without periodic or symmetry conditions) enable the activity of the all favored slip systems. Thus, they offer a more realistic insight into the microscopic processes generated by the crack itself in dependence on the T-stress level.

  • Název v anglickém jazyce

    Dislocation emission and crack growth in 3D bcc iron crystals under biaxial loading by atomistic simulations

  • Popis výsledku anglicky

    This paper is devoted to the study of the ductile-brittle behavior of a central nanocrack (1¯10)[110] (crack plane/crack front) under biaxial loading via free 3D molecular dynamics (MD) simulations, as well as the comparison of MD results with continuum predictions concerning T-stress. The so called T-stress is a constant stress component acting along the crack plane, which should be considered (together with the stress intensity factor K) in the assessment of brittle-ductile behavior, namely, in the case of the short cracks. Previous 2D atomistic simulations under plane strain conditions indicated that the level of T-stress (controlled by the biaxiality ratio σB/σA from the external loading) affects dislocation emission from the crack and can cause the ductile-brittle transition. The plane strain simulations using the periodic or translational boundary conditions in the bcc lattice have certain limitations: they enable the in-plane dislocation emission (Burgers vector lies in the observation plane), but they do not allow the complete dislocation emission on the all slip systems favored by the shear stress. As presented, our new free 3D atomistic simulations (without periodic or symmetry conditions) enable the activity of the all favored slip systems. Thus, they offer a more realistic insight into the microscopic processes generated by the crack itself in dependence on the T-stress level.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Applied Physics

  • ISSN

    0021-8979

  • e-ISSN

  • Svazek periodika

    126

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    075115

  • Kód UT WoS článku

    000483849000035

  • EID výsledku v databázi Scopus

    2-s2.0-85071124624