Dislocation emission and crack growth in 3D bcc iron crystals under biaxial loading by atomistic simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00508315" target="_blank" >RIV/61388998:_____/19:00508315 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/pdf/10.1063/1.5109949?class=pdf" target="_blank" >https://aip.scitation.org/doi/pdf/10.1063/1.5109949?class=pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5109949" target="_blank" >10.1063/1.5109949</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dislocation emission and crack growth in 3D bcc iron crystals under biaxial loading by atomistic simulations
Popis výsledku v původním jazyce
This paper is devoted to the study of the ductile-brittle behavior of a central nanocrack (1¯10)[110] (crack plane/crack front) under biaxial loading via free 3D molecular dynamics (MD) simulations, as well as the comparison of MD results with continuum predictions concerning T-stress. The so called T-stress is a constant stress component acting along the crack plane, which should be considered (together with the stress intensity factor K) in the assessment of brittle-ductile behavior, namely, in the case of the short cracks. Previous 2D atomistic simulations under plane strain conditions indicated that the level of T-stress (controlled by the biaxiality ratio σB/σA from the external loading) affects dislocation emission from the crack and can cause the ductile-brittle transition. The plane strain simulations using the periodic or translational boundary conditions in the bcc lattice have certain limitations: they enable the in-plane dislocation emission (Burgers vector lies in the observation plane), but they do not allow the complete dislocation emission on the all slip systems favored by the shear stress. As presented, our new free 3D atomistic simulations (without periodic or symmetry conditions) enable the activity of the all favored slip systems. Thus, they offer a more realistic insight into the microscopic processes generated by the crack itself in dependence on the T-stress level.
Název v anglickém jazyce
Dislocation emission and crack growth in 3D bcc iron crystals under biaxial loading by atomistic simulations
Popis výsledku anglicky
This paper is devoted to the study of the ductile-brittle behavior of a central nanocrack (1¯10)[110] (crack plane/crack front) under biaxial loading via free 3D molecular dynamics (MD) simulations, as well as the comparison of MD results with continuum predictions concerning T-stress. The so called T-stress is a constant stress component acting along the crack plane, which should be considered (together with the stress intensity factor K) in the assessment of brittle-ductile behavior, namely, in the case of the short cracks. Previous 2D atomistic simulations under plane strain conditions indicated that the level of T-stress (controlled by the biaxiality ratio σB/σA from the external loading) affects dislocation emission from the crack and can cause the ductile-brittle transition. The plane strain simulations using the periodic or translational boundary conditions in the bcc lattice have certain limitations: they enable the in-plane dislocation emission (Burgers vector lies in the observation plane), but they do not allow the complete dislocation emission on the all slip systems favored by the shear stress. As presented, our new free 3D atomistic simulations (without periodic or symmetry conditions) enable the activity of the all favored slip systems. Thus, they offer a more realistic insight into the microscopic processes generated by the crack itself in dependence on the T-stress level.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Physics
ISSN
0021-8979
e-ISSN
—
Svazek periodika
126
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
075115
Kód UT WoS článku
000483849000035
EID výsledku v databázi Scopus
2-s2.0-85071124624