Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00509586" target="_blank" >RIV/61388998:_____/19:00509586 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.scitation.org/doi/10.1063/1.5100604" target="_blank" >https://aip.scitation.org/doi/10.1063/1.5100604</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5100604" target="_blank" >10.1063/1.5100604</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa
Popis výsledku v původním jazyce
A dual-capillary apparatus was developed for highly accurate measurements of density of liquids, including the supercooled liquid region. The device was used to determine the density of supercooled heavy water in the temperature range from 254 K to 298 K at pressures ranging from atmospheric to 100 MPa, relative to density at reference isotherm 298.15 K. The measurements of relative density were reproducible within 10 ppm, and their expanded (k = 2) uncertainty was within 50 ppm. To obtain absolute values of density, thermodynamic integration was performed using recent accurate speed of sound measurements in the stable liquid region. An empirical equation of state (EoS) was developed, giving specific volume as a rational function of pressure and temperature. The new experimental data are represented by EoS within their experimental uncertainty. Gibbs energy was obtained by EoS integration allowing computation of all thermodynamic properties of heavynwater using Gibbs energy derivatives. Although based on data in relatively narrow temperature and pressure ranges, the developed EoS shows an excellent agreement with literature data for densities, isothermal compressibilities, and isobaric expansivities of deeply supercooled heavy water. The curvature of the thermodynamic surface steeply increases toward low temperatures and low pressures, thus supporting the existence of the hypothesized liquid-liquid coexistence boundary in a close vicinity of existing experimental data.
Název v anglickém jazyce
Relative density and isobaric expansivity of cold and supercooled heavy water from 254 to 298 K and up to 100 MPa
Popis výsledku anglicky
A dual-capillary apparatus was developed for highly accurate measurements of density of liquids, including the supercooled liquid region. The device was used to determine the density of supercooled heavy water in the temperature range from 254 K to 298 K at pressures ranging from atmospheric to 100 MPa, relative to density at reference isotherm 298.15 K. The measurements of relative density were reproducible within 10 ppm, and their expanded (k = 2) uncertainty was within 50 ppm. To obtain absolute values of density, thermodynamic integration was performed using recent accurate speed of sound measurements in the stable liquid region. An empirical equation of state (EoS) was developed, giving specific volume as a rational function of pressure and temperature. The new experimental data are represented by EoS within their experimental uncertainty. Gibbs energy was obtained by EoS integration allowing computation of all thermodynamic properties of heavynwater using Gibbs energy derivatives. Although based on data in relatively narrow temperature and pressure ranges, the developed EoS shows an excellent agreement with literature data for densities, isothermal compressibilities, and isobaric expansivities of deeply supercooled heavy water. The curvature of the thermodynamic surface steeply increases toward low temperatures and low pressures, thus supporting the existence of the hypothesized liquid-liquid coexistence boundary in a close vicinity of existing experimental data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
—
Svazek periodika
151
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
034505
Kód UT WoS článku
000476588700016
EID výsledku v databázi Scopus
2-s2.0-85069463336