Dynamic perfect plasticity and damage in viscoelastic solids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00517342" target="_blank" >RIV/61388998:_____/19:00517342 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10403459
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/zamm.201800161" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/zamm.201800161</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201800161" target="_blank" >10.1002/zamm.201800161</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic perfect plasticity and damage in viscoelastic solids
Popis výsledku v původním jazyce
In this paper we analyze an isothermal and isotropic model for viscoelastic media combining linearized perfect plasticity (allowing for concentration of plastic strain and development of shear bands) and damage effects in a dynamic setting. The interplay between the viscoelastic rheology with inertia, elasto‐plasticity, and unidirectional rate‐dependent incomplete damage affecting both the elastic and viscous response, as well as the plastic yield stress, is rigorously characterized by showing existence of weak solutions to the constitutive and balance equations of the model. The analysis relies on the notions of plastic‐strain measures and bounded‐deformation displacements, on sophisticated time‐regularity estimates to establish a duality between acceleration and velocity of the elastic displacement, on the theory of rate‐independent processes for the energy conservation in the dynamical‐plastic part, and on the proof of the strong convergence of the elastic strains. Existence of suitably defined weak solutions (even conserving energy) is proved rather constructively by using a staggered two‐step time discretization scheme.
Název v anglickém jazyce
Dynamic perfect plasticity and damage in viscoelastic solids
Popis výsledku anglicky
In this paper we analyze an isothermal and isotropic model for viscoelastic media combining linearized perfect plasticity (allowing for concentration of plastic strain and development of shear bands) and damage effects in a dynamic setting. The interplay between the viscoelastic rheology with inertia, elasto‐plasticity, and unidirectional rate‐dependent incomplete damage affecting both the elastic and viscous response, as well as the plastic yield stress, is rigorously characterized by showing existence of weak solutions to the constitutive and balance equations of the model. The analysis relies on the notions of plastic‐strain measures and bounded‐deformation displacements, on sophisticated time‐regularity estimates to establish a duality between acceleration and velocity of the elastic displacement, on the theory of rate‐independent processes for the energy conservation in the dynamical‐plastic part, and on the proof of the strong convergence of the elastic strains. Existence of suitably defined weak solutions (even conserving energy) is proved rather constructively by using a staggered two‐step time discretization scheme.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-03834S" target="_blank" >GA18-03834S: Jevy lokalizace v materiálech s tvarovou pamětí: experimenty a modelování</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Svazek periodika
99
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
27
Strana od-do
UNSP e201800161
Kód UT WoS článku
000474796200002
EID výsledku v databázi Scopus
2-s2.0-85067379945