Supression of classical flutter ocsillations in bladed wheel using inner damping effect
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F20%3A00535110" target="_blank" >RIV/61388998:_____/20:00535110 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.easdprocedia.org/conferences/easd-conferences/eurodyn-2020/9031" target="_blank" >https://www.easdprocedia.org/conferences/easd-conferences/eurodyn-2020/9031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.47964/1120.9031.20212" target="_blank" >10.47964/1120.9031.20212</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Supression of classical flutter ocsillations in bladed wheel using inner damping effect
Popis výsledku v původním jazyce
Inner material damping effect for reduction of self-excited vibrations due to aeroelastic instability is studied on a numerical reduced model of a rotating turbine wheel with 66 blades. The aerodynamic nozzle excitation of the rotating wheel arises from the spatially periodical flow of steam through the stator blade cascade. This excitation causes travelling deformation waves in the wheel. The analysis of forced vibration of the wheel under selfexcitation is oriented on the narrow frequency range and therefore the bladed wheel is modelled by a modal synthesis method. The self-excited aero-elastic forces are described by Van der Pol model acting herein independently to the 1th axial flexural mode of each blade of the wheel. Numerical simulations showed a very fast entry of amplitudes increase due to selfexcitation.nThe initial forced vibration mode by nozzle excitation was decisive for the vibration pattern of self-excitation. Its suppression depended on the ratio between the intensity factor of self-excitation and the size of proportional damping describing the inner damping.
Název v anglickém jazyce
Supression of classical flutter ocsillations in bladed wheel using inner damping effect
Popis výsledku anglicky
Inner material damping effect for reduction of self-excited vibrations due to aeroelastic instability is studied on a numerical reduced model of a rotating turbine wheel with 66 blades. The aerodynamic nozzle excitation of the rotating wheel arises from the spatially periodical flow of steam through the stator blade cascade. This excitation causes travelling deformation waves in the wheel. The analysis of forced vibration of the wheel under selfexcitation is oriented on the narrow frequency range and therefore the bladed wheel is modelled by a modal synthesis method. The self-excited aero-elastic forces are described by Van der Pol model acting herein independently to the 1th axial flexural mode of each blade of the wheel. Numerical simulations showed a very fast entry of amplitudes increase due to selfexcitation.nThe initial forced vibration mode by nozzle excitation was decisive for the vibration pattern of self-excitation. Its suppression depended on the ratio between the intensity factor of self-excitation and the size of proportional damping describing the inner damping.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC19-02288J" target="_blank" >GC19-02288J: Robustní metody redukce-řádu modelu pro úlohy interakce poddajných těles s tekutinou</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EURODYN 2020
ISBN
978-618-85072-0-3
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
402-411
Název nakladatele
National Technical University of Athens (NTUA)
Místo vydání
Athens
Místo konání akce
Athény
Datum konání akce
23. 11. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—