Bi-penalty stabilized technique with predictor-corrector time scheme for contact-impact problems of elastic bars
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F21%3A00542069" target="_blank" >RIV/61388998:_____/21:00542069 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0378475421000987?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0378475421000987?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matcom.2021.03.023" target="_blank" >10.1016/j.matcom.2021.03.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bi-penalty stabilized technique with predictor-corrector time scheme for contact-impact problems of elastic bars
Popis výsledku v původním jazyce
This paper presents a stabilization technique for the finite element modelling of contact-impact problems of elastic bars via a bi-penalty method for enforcing contact constraints while employing an explicit predictor–corrector time integration algorithms. The present proposed method combines three salient features in carrying out explicit transient analysis of contactimpactnproblems: the addition of a penalty term associated with a kinetic energy expression of gap constraints, in addition to the conventional internal energy penalty term of the gap constraints, an explicit integration method that alleviates spurious oscillations, and, a judicious selection of two penalty parameters such that the stable time steps of the resulting explicit method is least compromised. Numerical experiments have been carried out with three explicit methods: the standard central difference method, the stabilized predictor–corrector method (Wu, 2003 [50]) and a method for mitigating spurious oscillations (Park et al., 2012 [44]) as applied to simulate one-dimensional contact-impact problems of the Signorini problem and the impact of two elastic bars. Results indicate that the proposed method can maintain the contact-free stability limit of the central difference and yield improved accuracy compared with existing bi-penalty methods.
Název v anglickém jazyce
Bi-penalty stabilized technique with predictor-corrector time scheme for contact-impact problems of elastic bars
Popis výsledku anglicky
This paper presents a stabilization technique for the finite element modelling of contact-impact problems of elastic bars via a bi-penalty method for enforcing contact constraints while employing an explicit predictor–corrector time integration algorithms. The present proposed method combines three salient features in carrying out explicit transient analysis of contactimpactnproblems: the addition of a penalty term associated with a kinetic energy expression of gap constraints, in addition to the conventional internal energy penalty term of the gap constraints, an explicit integration method that alleviates spurious oscillations, and, a judicious selection of two penalty parameters such that the stable time steps of the resulting explicit method is least compromised. Numerical experiments have been carried out with three explicit methods: the standard central difference method, the stabilized predictor–corrector method (Wu, 2003 [50]) and a method for mitigating spurious oscillations (Park et al., 2012 [44]) as applied to simulate one-dimensional contact-impact problems of the Signorini problem and the impact of two elastic bars. Results indicate that the proposed method can maintain the contact-free stability limit of the central difference and yield improved accuracy compared with existing bi-penalty methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics and Computers in Simulation
ISSN
0378-4754
e-ISSN
1872-7166
Svazek periodika
189
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
20
Strana od-do
305-324
Kód UT WoS článku
000683684700021
EID výsledku v databázi Scopus
2-s2.0-85104323450