Bi-penalty stabilized explicit finite element algorithm for one-dimensional contact-impact problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00512109" target="_blank" >RIV/61388998:_____/19:00512109 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bi-penalty stabilized explicit finite element algorithm for one-dimensional contact-impact problems
Popis výsledku v původním jazyce
In this contribution, a stabilization technique for finite element modelling of contact-impact problems based on the bipenalty method and the explicit predictor-corrector time integration is presented. The penalty method is a standard method for enforced contact constrains in dynamic problems. This method is easily implemented but the solution depends on numerical value of the stiffness penalty parameter and also the stability limit for explicit time integration is effected by a choice of this parameter. The bipenalty method is based on penalized not only stiffness term but also mass term concurrently. By this technique with a special ratio of mass and stiffness penalty parameters, the stability limit of contact-free problem is preserved. In this contribution, we also present a modification of the explicit time scheme based on predictor-corrector form. By meaning of this approach, spurious contact oscillations are eliminated and the results do not depend on numerical parameters.
Název v anglickém jazyce
Bi-penalty stabilized explicit finite element algorithm for one-dimensional contact-impact problems
Popis výsledku anglicky
In this contribution, a stabilization technique for finite element modelling of contact-impact problems based on the bipenalty method and the explicit predictor-corrector time integration is presented. The penalty method is a standard method for enforced contact constrains in dynamic problems. This method is easily implemented but the solution depends on numerical value of the stiffness penalty parameter and also the stability limit for explicit time integration is effected by a choice of this parameter. The bipenalty method is based on penalized not only stiffness term but also mass term concurrently. By this technique with a special ratio of mass and stiffness penalty parameters, the stability limit of contact-free problem is preserved. In this contribution, we also present a modification of the explicit time scheme based on predictor-corrector form. By meaning of this approach, spurious contact oscillations are eliminated and the results do not depend on numerical parameters.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering mechanics 2019. Book of full texts
ISBN
978-80-87012-71-0
ISSN
1805-8248
e-ISSN
—
Počet stran výsledku
4
Strana od-do
185-188
Název nakladatele
Institute of Thermomechanics of the Czech Academy of Sciences
Místo vydání
Prague
Místo konání akce
Svratka
Datum konání akce
13. 5. 2019
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—