On stability and reflection-transmission analysis of the bipenalty method in contact-impact problems: A one-dimensional, homogeneous case study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F18%3A00488825" target="_blank" >RIV/61388998:_____/18:00488825 - isvavai.cz</a>
Výsledek na webu
<a href="http://onlinelibrary.wiley.com/doi/10.1002/nme.5712/full" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/nme.5712/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.5712" target="_blank" >10.1002/nme.5712</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On stability and reflection-transmission analysis of the bipenalty method in contact-impact problems: A one-dimensional, homogeneous case study
Popis výsledku v původním jazyce
The stability and reflection-transmission properties of the bipenalty method are studied in application to explicit finite element analysis of one-dimensional contact-impact problems. It is known that the standard penalty method, where an additional stiffness term corresponding to contact boundary conditions is applied, attacks the stability limit of finite element model. Generally, the critical time step size rapidly decreases with increasing penalty stiffness. Recent comprehensive studies have shown that the so-called bipenalty technique, using mass penalty together with standard stiffness penalty, preserves the critical time step size associated to contact-free bodies. In this paper, the influence of the penalty ratio (ratio of stiffness and mass penalty parameters) on stability and reflection-transmission properties in one-dimensional contact-impact problems using the same material and mesh size for both domains is studied. The paper closes with numerical nexamples, which demonstrate the stability and reflection-transmission behavior of the bipenalty method in one-dimensional contact-impact and wave propagation problems of homogeneous materials.
Název v anglickém jazyce
On stability and reflection-transmission analysis of the bipenalty method in contact-impact problems: A one-dimensional, homogeneous case study
Popis výsledku anglicky
The stability and reflection-transmission properties of the bipenalty method are studied in application to explicit finite element analysis of one-dimensional contact-impact problems. It is known that the standard penalty method, where an additional stiffness term corresponding to contact boundary conditions is applied, attacks the stability limit of finite element model. Generally, the critical time step size rapidly decreases with increasing penalty stiffness. Recent comprehensive studies have shown that the so-called bipenalty technique, using mass penalty together with standard stiffness penalty, preserves the critical time step size associated to contact-free bodies. In this paper, the influence of the penalty ratio (ratio of stiffness and mass penalty parameters) on stability and reflection-transmission properties in one-dimensional contact-impact problems using the same material and mesh size for both domains is studied. The paper closes with numerical nexamples, which demonstrate the stability and reflection-transmission behavior of the bipenalty method in one-dimensional contact-impact and wave propagation problems of homogeneous materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
—
Svazek periodika
113
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
1607-1629
Kód UT WoS článku
000424523800004
EID výsledku v databázi Scopus
2-s2.0-85037367188