Explicit bipenalty finite element contact-impact algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00518660" target="_blank" >RIV/61388998:_____/19:00518660 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explicit bipenalty finite element contact-impact algorithm
Popis výsledku v původním jazyce
It is well known that standard stiffness penalty methods can significantly decrease the critical time step in explicit conditionally stable time integration schemes in transient dynamic finite element analysis. This is due to the fact that the stiffness penalty can greatly enlarge the maximum eigenfrequency of a system. One of the possibility to remedy this shortcoming is use the bipenalty method which utilizes both sti ness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the nite element system including its maximum eigenfrequency. The stability of the bipenalty method has been studied for one-dimensional contact-impact problems. The main attention has been paid on an upper bound estimation of the stable Courant number for the bipenalty method with respect to sti ness penalty and mass penalty parameters. In this work, use of the bipenalty method is extended for the solution of two-dimensional contact-impact problems. To this end, present symmetry preserving explicit contact algorithm has been modi ed to consider bipenalty treatment of contact constraints. Several numerical examples are presented including the longitudinal impact of two thick plates/cylindrical rods, for which analytical solutions are available. In all the cases the superiority of the bipenalty method over the standard sti ness penalty method is demonstrated.
Název v anglickém jazyce
Explicit bipenalty finite element contact-impact algorithm
Popis výsledku anglicky
It is well known that standard stiffness penalty methods can significantly decrease the critical time step in explicit conditionally stable time integration schemes in transient dynamic finite element analysis. This is due to the fact that the stiffness penalty can greatly enlarge the maximum eigenfrequency of a system. One of the possibility to remedy this shortcoming is use the bipenalty method which utilizes both sti ness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the nite element system including its maximum eigenfrequency. The stability of the bipenalty method has been studied for one-dimensional contact-impact problems. The main attention has been paid on an upper bound estimation of the stable Courant number for the bipenalty method with respect to sti ness penalty and mass penalty parameters. In this work, use of the bipenalty method is extended for the solution of two-dimensional contact-impact problems. To this end, present symmetry preserving explicit contact algorithm has been modi ed to consider bipenalty treatment of contact constraints. Several numerical examples are presented including the longitudinal impact of two thick plates/cylindrical rods, for which analytical solutions are available. In all the cases the superiority of the bipenalty method over the standard sti ness penalty method is demonstrated.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů