Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Explicit bipenalty finite element contact-impact algorithm

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00518660" target="_blank" >RIV/61388998:_____/19:00518660 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Explicit bipenalty finite element contact-impact algorithm

  • Popis výsledku v původním jazyce

    It is well known that standard stiffness penalty methods can significantly decrease the critical time step in explicit conditionally stable time integration schemes in transient dynamic finite element analysis. This is due to the fact that the stiffness penalty can greatly enlarge the maximum eigenfrequency of a system. One of the possibility to remedy this shortcoming is use the bipenalty method which utilizes both sti ness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the nite element system including its maximum eigenfrequency. The stability of the bipenalty method has been studied for one-dimensional contact-impact problems. The main attention has been paid on an upper bound estimation of the stable Courant number for the bipenalty method with respect to sti ness penalty and mass penalty parameters. In this work, use of the bipenalty method is extended for the solution of two-dimensional contact-impact problems. To this end, present symmetry preserving explicit contact algorithm has been modi ed to consider bipenalty treatment of contact constraints. Several numerical examples are presented including the longitudinal impact of two thick plates/cylindrical rods, for which analytical solutions are available. In all the cases the superiority of the bipenalty method over the standard sti ness penalty method is demonstrated.

  • Název v anglickém jazyce

    Explicit bipenalty finite element contact-impact algorithm

  • Popis výsledku anglicky

    It is well known that standard stiffness penalty methods can significantly decrease the critical time step in explicit conditionally stable time integration schemes in transient dynamic finite element analysis. This is due to the fact that the stiffness penalty can greatly enlarge the maximum eigenfrequency of a system. One of the possibility to remedy this shortcoming is use the bipenalty method which utilizes both sti ness and mass penalties to impose constraints that have a minimal effect on the eigenfrequencies of the nite element system including its maximum eigenfrequency. The stability of the bipenalty method has been studied for one-dimensional contact-impact problems. The main attention has been paid on an upper bound estimation of the stable Courant number for the bipenalty method with respect to sti ness penalty and mass penalty parameters. In this work, use of the bipenalty method is extended for the solution of two-dimensional contact-impact problems. To this end, present symmetry preserving explicit contact algorithm has been modi ed to consider bipenalty treatment of contact constraints. Several numerical examples are presented including the longitudinal impact of two thick plates/cylindrical rods, for which analytical solutions are available. In all the cases the superiority of the bipenalty method over the standard sti ness penalty method is demonstrated.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    20302 - Applied mechanics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů